Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38893494

RESUMEN

Syzgium cumini (L.) Skeels powder (S. cumini powder), also known as Jamun, is well-known for its various medical and health benefits. It is especially recognized for its antidiabetic and antioxidant properties. Thus, S. cumini powder is used in various industries, such as the food and cosmetic industries. In this work, the fruit of S. cumini was utilized; its seeds were extracted, dried, and ground into powder. The ground powders were subjected to various techniques such as physicochemical tests, Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), particle size analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and antioxidant analysis. From the physicochemical tests, it was revealed that the jamun seed filler contained cellulose (43.28%), hemicellulose (19.88%), lignin (23.28%), pectin (12.58%), and wax (0.98%). The FTIR analysis supported these results. For instance, a peak at 2889 cm-1 was observed and associated with CH stretching, typically found in methyl and methylene groups, characteristic of cellulose and hemicellulose structures. The XRD results demonstrated that the crystallinity index of the jamun seed filler was 42.63%. The particle analysis indicated that the mean (average) particle size was 25.34 µm. This observation was ensured with SEM results. The EDX spectrum results showed the elemental composition of the fillers. Regarding thermal degradation, the jamun seed filler had the ability to withstand temperatures of up to 316.5 °C. Furthermore, endothermic and exothermic peaks were observed at 305 °C and 400 °C, respectively. Furthermore, the antioxidant property of the powder displayed a peak scavenging activity of 91.4%. This comprehensive study not only underscores the viability of S. cumini powder as a sustainable and effective particulate filler in polymer composites but also demonstrates its potential to enhance the mechanical properties of composites, thereby offering significant implications for the development of eco-friendly materials in various industrial applications.

2.
Radiat Prot Dosimetry ; 200(3): 221-228, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-37807769

RESUMEN

This study aims to establish baseline micronucleus (MN) frequencies from various populations of residents in Vietnam and develop a 60Co dose-response curve for the cytokinesis-block micronucleus (CBMN) assay. Blood samples were exposed in vitro to a 60Co source at a dose rate of 275 mGy per min in a range of 0.1 to 4.0 Gy. MN background frequencies were 4.5 ± 3.2, 7.3 ± 4.6, 7.0 ± 3.8 and 13.1 ± 6.7 in 1000 binucleated (BN) cells for 96 healthy donors, 22 male radiation workers and 12 breast cancer patients, respectively. Blood samples from three healthy donors were used to generate the MN dose-response curve: y = C + (0.0496 ± 0.0069)D + (0.0143 ± 0.0026)D2. This curve was verified through an inter-laboratory comparison (RENEB ILC 2021). Our findings highlight the significance of the CBMN assay as an additional essential tool for biodosimetry in Vietnam.


Asunto(s)
Radioisótopos de Cobalto , Citocinesis , Humanos , Masculino , Pruebas de Micronúcleos , Vietnam , Linfocitos
3.
J Phys Condens Matter ; 34(27)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35453138

RESUMEN

We predict a novel topological state,half-topological state, in magnetic topological insulators. The topological state is characterized by different topologies of electrons with different spin orientations, i.e., electrons with one spin orientation occupy a nontrivial topological insulating state, while electrons with opposite orientation occupy another insulating state with trivial topology. We demonstrate the occurrence of the half-topological state in magnetic topological insulators by employing a minimal model. The minimal model is a combination of the spinful Haldane and the double-exchange models. The double-exchange processes maintain a spontaneous magnetic ordering, while the next-nearest-neighbor hopping in the Haldane model gives rise to a nontrivial topological insulator. The minimal model is studied by applying the dynamical mean field theory. It is found that the long-range antiferromagnetic ordering drives the system from either topological or topologically trivial antiferromagnetic insulator to the half-topological state, and finally to topologically trivial antiferromagnetic insulator. The equations for the topological phase transitions are also explicitly derived.

4.
Biomed Pharmacother ; 147: 112650, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066301

RESUMEN

BACKGROUND: The objective of the present work was to assess the reactogenicity and immunogenicity of heterologous COVID-19 vaccination regimens in clinical trials and observational studies. METHODS: PubMed, Cochrane Library, Embase, MedRxiv, BioRxiv databases were searched in September 29, 2021. The PRISMA instruction for systemic review was followed. Two reviewers independently selected the studies, extracted the data and assessed risk of bias. The quality of studies was evaluated using the New Castle-Ottawa and Cochrane risk of instrument. The characteristics and study outcome (e.g., adverse events, immune response, and variant of concern) were extracted. RESULTS: Nineteen studies were included in the final data synthesis with 5 clinical trials and 14 observational studies. Heterologous vaccine administration showed a trend toward more frequent systemic reactions. However, the total reactogenicity was tolerable and manageable. Importantly, the heterologous prime-boost vaccination regimens provided higher immunogenic effect either vector/ mRNA-based vaccine or vector/ inactivated vaccine in both humoral and cellular immune response. Notably, the heterologous regimens induced the potential protection against the variant of concern, even to the Delta variant. CONCLUSIONS: The current findings provided evidence about the higher induction of robust immunogenicity and tolerated reactogenicity of heterologous vaccination regimens (vector-based/mRNA vaccine or vector-based/inactivated vaccine). Also, this study supports the application of heterologous regimens against COVID-19 which may provide more opportunities to speed up the global vaccination campaign and maximize the capacity to control the pandemic.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Inmunogenicidad Vacunal , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Artralgia/inducido químicamente , Vacuna BNT162/uso terapéutico , ChAdOx1 nCoV-19/uso terapéutico , Diarrea/inducido químicamente , Fatiga/inducido químicamente , Fiebre/inducido químicamente , Cefalea/inducido químicamente , Humanos , Inmunización Secundaria , Reacción en el Punto de Inyección/etiología , Mialgia/inducido químicamente , SARS-CoV-2 , Vacunación , Vacunas de Subunidad/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA