Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(4): e0011259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014918

RESUMEN

BACKGROUND: Diarrheagenic Escherichia coli (DEC) is a group of bacterial pathogens that causes life-threatening diarrhea in children in developing countries. However, there is limited information on the characteristics of DEC isolated from patients in these countries. A detailed genomic analysis of 61 DEC-like isolates from infants with diarrhea was performed to clarify and share the characteristics of DEC prevalent in Vietnam. PRINCIPAL FINDINGS: DEC was classified into 57 strains, including 33 enteroaggregative E. coli (EAEC) (54.1%), 20 enteropathogenic E. coli (EPEC) (32.8%), two enteroinvasive E. coli (EIEC) (3.3%), one enterotoxigenic E. coli (ETEC), and one ETEC/EIEC hybrid (1.6% each), and surprisingly into four Escherichia albertii strains (6.6%). Furthermore, several epidemic DEC clones showed an uncommon combination of pathotypes and serotypes, such as EAEC Og130:Hg27, EAEC OgGp9:Hg18, EAEC OgX13:H27, EPEC OgGp7:Hg16, and E. albertii EAOg1:HgUT. Genomic analysis also revealed the presence of various genes and mutations associated with antibiotic resistance in many isolates. Strains that demonstrate potential resistance to ciprofloxacin and ceftriaxone, drugs recommended for treating childhood diarrhea, accounted for 65.6% and 41%, respectively. SIGNIFICANCE: Our finding indicate that the routine use of these antibiotics has selected resistant DECs, resulting in a situation where these drugs do not provide in therapeutic effects for some patients. Bridging this gap requires continuous investigations and information sharing regarding the type and distribution of endemic DEC and E. albertii and their antibiotic resistance in different countries.


Asunto(s)
Escherichia coli Enteropatógena , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Niño , Humanos , Lactante , Infecciones por Escherichia coli/microbiología , Vietnam/epidemiología , Diarrea/epidemiología , Diarrea/microbiología , Escherichia coli Enteropatógena/genética , Escherichia coli Enterotoxigénica/genética , Genómica
2.
J Water Health ; 21(1): 47-65, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36705497

RESUMEN

This study evaluated the experience of implementing water safety plans (WSPs) in Vietnam. WSPs were introduced in Vietnam by the World Health Organization (WHO) in collaboration with the Ministry of Construction in 2006 and have been a mandatory requirement for municipal water supplies since 2012. Using a mixed-methods approach, we collected data on the perceived benefits and challenges of WSP implementation from 23 provincial water companies between August and November 2021. Potential public health benefits of improved water quality were a key motivation; 87% of the water utilities were also motivated by the risk of climate change and prepared response plans to climate-related extreme events as part of WSPs. A decrease in E. coli and an improvement in disinfectant residual in treated water were reported by 61 and 83% of the water supplies, respectively. Sixty-five percent of the water supplies also reported improved revenue and cost recovery. Key barriers to WSP implementation were a lack of WSP guidance suitable for the local context (87%) and insufficient funds for WSP implementation (43%). Our study highlights the need for improved support and capacity building along with locally suited guidance on WSP implementation and audit.


Asunto(s)
Escherichia coli , Abastecimiento de Agua , Vietnam , Calidad del Agua , Salud Pública
3.
Pathogens ; 13(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251349

RESUMEN

Innate immunity is essential for the anti-microbial defense, but excessive immune activation may cause severe disease. In this study, immunotherapy was shown to prevent excessive innate immune activation and restore the anti-bacterial defense. E. coli-infected Asc-/- mice develop severe acute cystitis, defined by IL-1 hyper-activation, high bacterial counts, and extensive tissue pathology. Here, the interleukin-1 receptor antagonist (IL-1RA), which inhibits IL-1 hyper-activation in acute cystitis, was identified as a more potent inhibitor of inflammation and NK1R- and substance P-dependent pain than cefotaxime. Furthermore, IL-1RA treatment inhibited the excessive innate immune activation in the kidneys of infected Irf3-/- mice and restored tissue integrity. Unexpectedly, IL-1RA also accelerated bacterial clearance from infected bladders and kidneys, including antibiotic-resistant E. coli, where cefotaxime treatment was inefficient. The results suggest that by targeting the IL-1 response, control of the innate immune response to infection may be regained, with highly favorable treatment outcomes, including infections caused by antibiotic-resistant strains.

4.
Nat Rev Urol ; 19(7): 419-437, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732832

RESUMEN

Innovative solutions are needed for the treatment of bacterial infections, and a range of antibacterial molecules have been explored as alternatives to antibiotics. A different approach is to investigate the immune system of the host for new ways of making the antibacterial defence more efficient. However, the immune system has a dual role as protector and cause of disease: in addition to being protective, increasing evidence shows that innate immune responses can become excessive and cause acute symptoms and tissue pathology during infection. This role of innate immunity in disease suggests that the immune system should be targeted therapeutically, to inhibit over-reactivity. The ultimate goal is to develop therapies that selectively attenuate destructive immune response cascades, while augmenting the protective antimicrobial defence but such treatment options have remained underexplored, owing to the molecular proximity of the protective and destructive effects of the immune response. The concept of innate immunomodulation therapy has been developed successfully in urinary tract infections, based on detailed studies of innate immune activation and disease pathogenesis. Effective, disease-specific, immunomodulatory strategies have been developed by targeting specific immune response regulators including key transcription factors. In acute pyelonephritis, targeting interferon regulatory factor 7 using small interfering RNA or treatment with antimicrobial peptide cathelicidin was protective and, in acute cystitis, targeting overactive effector molecules such as IL-1ß, MMP7, COX2, cAMP and the pain-sensing receptor NK1R has been successful in vivo. Furthermore, other UTI treatment strategies, such as inhibiting bacterial adhesion and vaccination, have also shown promise.


Asunto(s)
Cistitis , Pielonefritis , Infecciones Urinarias , Antibacterianos/uso terapéutico , Cistitis/tratamiento farmacológico , Humanos , Inmunomodulación , Pielonefritis/tratamiento farmacológico , Pielonefritis/genética , Pielonefritis/microbiología , Infecciones Urinarias/tratamiento farmacológico
5.
Phytochemistry ; 200: 113218, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490775

RESUMEN

Bioassay-guided fractionation of the 80% ethanol extract of Gynostemma compressum X. X. Chen & D. R. Liang (Cucurbitaceae) resulted in the isolation and identification of eight undescribed triterpenoids, gycomol VN1, gycomol VN2, and gycomosides VN1-6 from the bioactive n-butanol fraction. The structures of these compounds were elucidated by one- and two-dimensional nuclear magnetic resonance spectroscopy, high-resolution electrospray ionisation mass spectrometry, and chemical methods. All isolated compounds were evaluated for their 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) activation effects on 3T3-L1 cells. Importantly, gycomol VN2, gycomoside VN1, and gycomosides VN3-5 activated the phosphorylation of AMPK and its downstream substrate ACC in 3T3-L1 cells at a dose of 10 µM. These effects imply that the activation of AMPK and ACC by active compounds from G. compressum has considerable potential for the prevention of obesity and its related disorders by activating AMPK signaling pathways.


Asunto(s)
Cucurbitaceae , Triterpenos , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Gynostemma/química , Ratones , Triterpenos/química , Triterpenos/farmacología , Damaranos
6.
Biofactors ; 48(5): 1145-1159, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35388547

RESUMEN

Complexes formed by the alpha1 N-terminal peptide of alpha-lactalbumin and oleic acid (alpha1-oleate) interact with lipid bilayers. Plasma membrane perturbations trigger tumor cell death but normal differentiated cells are more resistant, and their plasma membranes are less strongly affected. This study examined membrane lipid composition as a determinant of tumor cell reactivity. Bladder cancer tissue showed a higher abundance of unsaturated lipids enriched in phosphatidylcholine, PC (36:4) and PC (38:4), and sphingomyelin, SM (36:1) than healthy bladder tissue, where saturated lipids predominated and the lipid extracts from bladder cancer tissue inhibited the tumoricidal effect of the complex more effectively than healthy tissue extracts. Furthermore, unsaturated PC in solution inhibited tumor cell death, and the complex interacted with giant unilamellar vesicles formed by PC, confirming the affinity of alpha1-oleate for fluid membranes enriched in PC. Quartz Crystal Microbalance with dissipation monitoring (QCM-D) detected a preference of the complex for the liquid-disordered phase, suggesting that the insertion into PC-based membranes and the resulting membrane perturbations are influenced by membrane lipid saturation. The results suggest that the membrane lipid composition is functionally important and that specific unsaturated membrane lipids may serve as "recognition motifs" for broad-spectrum tumoricidal molecules such as alpha1-oleate.


Asunto(s)
Membrana Dobles de Lípidos , Neoplasias de la Vejiga Urinaria , Humanos , Lactalbúmina/química , Lactalbúmina/metabolismo , Lactalbúmina/farmacología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ácido Oléico/química , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Fosfatidilcolinas/química , Esfingomielinas/química , Extractos de Tejidos , Liposomas Unilamelares
7.
Nat Rev Urol ; 18(8): 468-486, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34131331

RESUMEN

The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Inmunidad Innata , SARS-CoV-2/inmunología , Infecciones Urinarias/diagnóstico , COVID-19/inmunología , Humanos , Pandemias , Índice de Severidad de la Enfermedad , Infecciones Urinarias/epidemiología , Infecciones Urinarias/inmunología
8.
Nat Commun ; 12(1): 3427, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103518

RESUMEN

Partially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479). A 39-residue alpha-helical peptide from alpha-lactalbumin is shown to gain lethality for tumor cells by forming oleic acid complexes (alpha1-oleate). Nuclear magnetic resonance measurements and computational simulations reveal a lipid core surrounded by conformationally fluid, alpha-helical peptide motifs. In a single center, placebo controlled, double blinded Phase I/II interventional clinical trial of non-muscle invasive bladder cancer, all primary end points of safety and efficacy of alpha1-oleate treatment are reached, as evaluated in an interim analysis. Intra-vesical instillations of alpha1-oleate triggers massive shedding of tumor cells and the tumor size is reduced but no drug-related side effects are detected (primary endpoints). Shed cells contain alpha1-oleate, treated tumors show evidence of apoptosis and the expression of cancer-related genes is inhibited (secondary endpoints). The results are especially encouraging for bladder cancer, where therapeutic failures and high recurrence rates create a great, unmet medical need.


Asunto(s)
Péptidos/química , Péptidos/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Determinación de Punto Final , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Oléicos/química , Péptidos/farmacología , Placebos , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , Termodinámica , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
9.
Nat Biotechnol ; 39(6): 754-764, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33574609

RESUMEN

Is the oncogene MYC upregulated or hyperactive? In the majority of human cancers, finding agents that target c-MYC has proved difficult. Here we report specific bacterial effector molecules that inhibit cellular MYC (c-MYC) in human cells. We show that uropathogenic Escherichia coli (UPEC) degrade the c-MYC protein and attenuate MYC expression in both human cells and animal tissues. c-MYC protein was rapidly degraded by both cell-free bacterial lysates and the purified bacterial protease Lon. In mice, intravesical or peroral delivery of Lon protease delayed tumor progression and increased survival in MYC-dependent bladder and colon cancer models, respectively. These results suggest that bacteria have evolved strategies to control c-MYC tissue levels in the host and that the Lon protease shows promise for therapeutic targeting of c-MYC in cancer.


Asunto(s)
Neoplasias del Colon/patología , Genes myc , Neoplasias de la Vejiga Urinaria/patología , Escherichia coli Uropatógena/enzimología , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/patología , Eliminación de Gen , Ratones , Nefritis/genética
10.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320835

RESUMEN

Unlike pathogens, which attack the host, commensal bacteria create a state of friendly coexistence. Here, we identified a mechanism of bacterial adaptation to the host niche, where they reside. Asymptomatic carrier strains were shown to inhibit RNA polymerase II (Pol II) in host cells by targeting Ser2 phosphorylation, a step required for productive mRNA elongation. Assisted by a rare, spontaneous loss-of-function mutant from a human carrier, the bacterial NlpD protein was identified as a Pol II inhibitor. After internalization by host cells, NlpD was shown to target constituents of the Pol II phosphorylation complex (RPB1 and PAF1C), attenuating host gene expression. Therapeutic efficacy of a recombinant NlpD protein was demonstrated in a urinary tract infection model, by reduced tissue pathology, accelerated bacterial clearance, and attenuated Pol II-dependent gene expression. The findings suggest an intriguing, evolutionarily conserved mechanism for bacterial modulation of host gene expression, with a remarkable therapeutic potential.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica/inmunología , Lipoproteínas , ARN Polimerasa II , Infecciones Urinarias , Animales , Línea Celular Tumoral , Escherichia coli/genética , Escherichia coli/inmunología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Femenino , Humanos , Lipoproteínas/genética , Lipoproteínas/inmunología , Ratones , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , Infecciones Urinarias/genética , Infecciones Urinarias/inmunología
11.
Sci Total Environ ; 725: 138325, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32464744

RESUMEN

In this study, activated carbon in the form of carbonaceous hydrochar adsorbents with highly functionalized surface-active sites were produced from coffee husk waste via hydrothermal carbonization under low-temperature conditions (180 °C) and subsequent chemical activation. Thereafter, the hydrochars were characterized using diverse analytical techniques, and batch experiments of methylene blue (MB) adsorption were performed under various operating conditions. The results indicated that the activated hydrochar (AH) had a larger specific surface area (862.2 m2 g-1) compared to that of its carbonaceous precursor (33.7 m2 g-1). The maximum MB sorption capacity of the hydrochar activated with potassium hydroxide was extremely high (415.8 mg g-1 at 30 °C). In addition, adsorption isotherms and kinetics were studied using experimental data fitting to further understand and describe the dynamic equilibrium, dynamic kinetics, and mechanism of MB adsorption onto the prepared hydrochars. As compared to the Freundlich isotherm model, the Langmuir isotherm model provided a better fit with the experimental data exhibiting a maximum monolayer adsorption capacity of 418.78 mg g-1. The linear pseudo-second-order kinetic model was found to be suitable for describing the adsorptive kinetics of the hydrochar. The results demonstrated the immense potential of coffee husk waste to produce activated carbon as an alternative green hydrochar that can be applied to dye removal from wastewater as well as improvement of waste management.


Asunto(s)
Azul de Metileno/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Café , Colorantes , Concentración de Iones de Hidrógeno , Cinética
12.
Natural Product Sciences ; : 200-206, 2020.
Artículo | WPRIM (Pacífico Occidental) | ID: wpr-836994

RESUMEN

The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 – 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 μg/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 – 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 – 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

13.
Sci Rep ; 8(1): 11015, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030504

RESUMEN

The nervous system is engaged by infection, indirectly through inflammatory cascades or directly, by bacterial attack on nerve cells. Here we identify a neuro-epithelial activation loop that participates in the control of mucosal inflammation and pain in acute cystitis. We show that infection activates Neurokinin-1 receptor (NK1R) and Substance P (SP) expression in nerve cells and bladder epithelial cells in vitro and in vivo in the urinary bladder mucosa. Specific innate immune response genes regulated this mucosal response, and single gene deletions resulted either in protection (Tlr4-/- and Il1b-/- mice) or in accentuated bladder pathology (Asc-/- and Nlrp3-/- mice), compared to controls. NK1R/SP expression was lower in Tlr4-/- and Il1b-/- mice than in C56BL/6WT controls but in Asc-/- and Nlrp3-/- mice, NK1R over-activation accompanied the exaggerated disease phenotype, due, in part to transcriptional de-repression of Tacr1. Pharmacologic NK1R inhibitors attenuated acute cystitis in susceptible mice, supporting a role in disease pathogenesis. Clinical relevance was suggested by elevated urine SP levels in patients with acute cystitis, compared to patients with asymptomatic bacteriuria identifying NK1R/SP as potential therapeutic targets. We propose that NK1R and SP influence the severity of acute cystitis through a neuro-epithelial activation loop that controls pain and mucosal inflammation.


Asunto(s)
Cistitis/patología , Células Neuroepiteliales/fisiología , Receptores de Neuroquinina-1/metabolismo , Adulto , Animales , Cistitis/inmunología , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Mucosa/fisiología , Inflamación/patología , Interleucina-1beta/genética , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Mucositis/patología , Músculo Liso/metabolismo , Células Neuroepiteliales/metabolismo , Neutrófilos , Dolor/patología , Sustancia P/metabolismo , Receptor Toll-Like 4/genética , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología
14.
Med Chem ; 7(6): 727-31, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22313313

RESUMEN

A series of simple (6-substituted benzothiazol-2-yl)acrylamides was synthesized and evaluated for cytotoxicity and antimicrobial effects. All six compounds displayed very significant cytotoxicity against four cancer cell lines tested including A549 (a human lung cancer cell line), Hela (a human ovarian cancer cell line), MCF7 (a human breast cancer cell line), and even MCF7-ADR (adriamycin-resistant human breast cancer cell line), with IC(50) values in microgram/ml range and as low as 0.66 µg/ml. The synthesized compounds also exhibited some antifungal effects against Apergillus niger.


Asunto(s)
Acrilamidas/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Acrilamidas/síntesis química , Acrilamidas/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA