Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
J Stroke Cerebrovasc Dis ; 31(11): 106753, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115105

RESUMEN

OBJECTIVES: In this study, we developed a deep learning pipeline that detects large vessel occlusion (LVO) and predicts functional outcome based on computed tomography angiography (CTA) images to improve the management of the LVO patients. METHODS: A series identifier picked out 8650 LVO-protocoled studies from 2015 to 2019 at Rhode Island Hospital with an identified thin axial series that served as the data pool. Data were annotated into 2 classes: 1021 LVOs and 7629 normal. The Inception-V1 I3D architecture was applied for LVO detection. For outcome prediction, 323 patients undergoing thrombectomy were selected. A 3D convolution neural network (CNN) was used for outcome prediction (30-day mRS) with CTA volumes and embedded pre-treatment variables as inputs. RESULT: For LVO-detection model, CTAs from 8,650 patients (median age 68 years, interquartile range (IQR): 58-81; 3934 females) were analyzed. The cross-validated AUC for LVO vs. not was 0.74 (95% CI: 0.72-0.75). For the mRS classification model, CTAs from 323 patients (median age 75 years, IQR: 63-84; 164 females) were analyzed. The algorithm achieved a test AUC of 0.82 (95% CI: 0.79-0.84), sensitivity of 89%, and specificity 66%. The two models were then integrated with hospital infrastructure where CTA was collected in real-time and processed by the model. If LVO was detected, interventionists were notified and provided with predicted clinical outcome information. CONCLUSION: 3D CNNs based on CTA were effective in selecting LVO and predicting LVO mechanical thrombectomy short-term prognosis. End-to-end AI platform allows users to receive immediate prognosis prediction and facilitates clinical workflow.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Femenino , Humanos , Anciano , Inteligencia Artificial , Trombectomía/efectos adversos , Angiografía por Tomografía Computarizada/métodos , Arteria Cerebral Media , Estudios Retrospectivos
4.
R I Med J (2013) ; 105(3): 39-41, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35349620

RESUMEN

Humoral hypercalcemia of malignancy is rarely seen in urothelial cancer. In this report, we present a case of an 81-year-old female patient who presented with a markedly elevated calcium level leading to severe altered mental status and was found to have urothelial cancer. To our knowledge, only three cases of urothelial carcinoma with squamous cell differentiation have been reported.


Asunto(s)
Carcinoma de Células Escamosas , Carcinoma de Células Transicionales , Hipercalcemia , Neoplasias de la Vejiga Urinaria , Anciano de 80 o más Años , Femenino , Humanos , Hipercalcemia/etiología
5.
Eur Radiol ; 32(7): 4446-4456, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35184218

RESUMEN

OBJECTIVES: We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-hospital mortality of COVID-19 patients in the intensive care unit (ICU). METHODS: Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions. Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the best-performing models. RESULTS: A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A model based on all longitudinal CXRs (both pre-ICU and ICU) achieved an AUC of 0.702 and an accuracy of 0.694. A model based on clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732. CONCLUSIONS: The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for COVID-19 patients in the ICU. KEY POINTS: • Deep learning was used to predict mortality in COVID-19 ICU patients. • Serial radiographs and clinical data were used. • The models could inform clinical decision-making and resource allocation.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Unidades de Cuidados Intensivos , Radiografía , Rayos X
6.
NPJ Digit Med ; 5(1): 5, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031687

RESUMEN

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital's image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.

7.
Eur Radiol ; 32(1): 205-212, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34223954

RESUMEN

OBJECTIVES: Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. METHODS: An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. RESULTS: A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). CONCLUSIONS: Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment. KEY POINT: • AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.


Asunto(s)
COVID-19 , Inteligencia Artificial , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
8.
Sci Rep ; 11(1): 11734, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083670

RESUMEN

To explore the role of chronic liver disease (CLD) in COVID-19. A total of 1439 consecutively hospitalized patients with COVID-19 from one large medical center in the United States from March 16, 2020 to April 23, 2020 were retrospectively identified. Clinical characteristics and outcomes were compared between patients with and without CLD. Postmortem examination of liver in 8 critically ill COVID-19 patients was performed. There was no significant difference in the incidence of CLD between critical and non-critical groups (4.1% vs 2.9%, p = 0.259), or COVID-19 related liver injury between patients with and without CLD (65.7% vs 49.7%, p = 0.065). Postmortem examination of liver demonstrated mild liver injury associated central vein outflow obstruction and minimal to moderate portal lymphocytic infiltrate without evidence of CLD. Patients with CLD were not associated with a higher risk of liver injury or critical/fatal outcomes. CLD was not a significant comorbid condition for COVID-19.


Asunto(s)
COVID-19/epidemiología , Hepatopatías/epidemiología , Lesión Pulmonar Aguda/epidemiología , Lesión Pulmonar Aguda/patología , Anciano , COVID-19/mortalidad , Enfermedad Crónica , Comorbilidad , Femenino , Humanos , Hepatopatías/patología , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estados Unidos/epidemiología
9.
CNS Neurosci Ther ; 27(10): 1127-1135, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132473

RESUMEN

AIMS: To determine if neurologic symptoms at admission can predict adverse outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Electronic medical records of 1053 consecutively hospitalized patients with laboratory-confirmed infection of SARS-CoV-2 from one large medical center in the USA were retrospectively analyzed. Univariable and multivariable Cox regression analyses were performed with the calculation of areas under the curve (AUC) and concordance index (C-index). Patients were stratified into subgroups based on the presence of encephalopathy and its severity using survival statistics. In sensitivity analyses, patients with mild/moderate and severe encephalopathy (defined as coma) were separately considered. RESULTS: Of 1053 patients (mean age 52.4 years, 48.0% men [n = 505]), 35.1% (n = 370) had neurologic manifestations at admission, including 10.3% (n = 108) with encephalopathy. Encephalopathy was an independent predictor for death (hazard ratio [HR] 2.617, 95% confidence interval [CI] 1.481-4.625) in multivariable Cox regression. The addition of encephalopathy to multivariable models comprising other predictors for adverse outcomes increased AUCs (mortality: 0.84-0.86, ventilation/ intensive care unit [ICU]: 0.76-0.78) and C-index (mortality: 0.78 to 0.81, ventilation/ICU: 0.85-0.86). In sensitivity analyses, risk stratification survival curves for mortality and ventilation/ICU based on severe encephalopathy (n = 15) versus mild/moderate encephalopathy (n = 93) versus no encephalopathy (n = 945) at admission were discriminative (p < 0.001). CONCLUSIONS: Encephalopathy at admission predicts later progression to death in SARS-CoV-2 infection, which may have important implications for risk stratification in clinical practice.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/mortalidad , COVID-19/diagnóstico , COVID-19/mortalidad , Admisión del Paciente/tendencias , Adulto , Anciano , Encefalopatías/terapia , COVID-19/terapia , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos
12.
Lancet Digit Health ; 3(5): e286-e294, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773969

RESUMEN

BACKGROUND: Chest x-ray is a relatively accessible, inexpensive, fast imaging modality that might be valuable in the prognostication of patients with COVID-19. We aimed to develop and evaluate an artificial intelligence system using chest x-rays and clinical data to predict disease severity and progression in patients with COVID-19. METHODS: We did a retrospective study in multiple hospitals in the University of Pennsylvania Health System in Philadelphia, PA, USA, and Brown University affiliated hospitals in Providence, RI, USA. Patients who presented to a hospital in the University of Pennsylvania Health System via the emergency department, with a diagnosis of COVID-19 confirmed by RT-PCR and with an available chest x-ray from their initial presentation or admission, were retrospectively identified and randomly divided into training, validation, and test sets (7:1:2). Using the chest x-rays as input to an EfficientNet deep neural network and clinical data, models were trained to predict the binary outcome of disease severity (ie, critical or non-critical). The deep-learning features extracted from the model and clinical data were used to build time-to-event models to predict the risk of disease progression. The models were externally tested on patients who presented to an independent multicentre institution, Brown University affiliated hospitals, and compared with severity scores provided by radiologists. FINDINGS: 1834 patients who presented via the University of Pennsylvania Health System between March 9 and July 20, 2020, were identified and assigned to the model training (n=1285), validation (n=183), or testing (n=366) sets. 475 patients who presented via the Brown University affiliated hospitals between March 1 and July 18, 2020, were identified for external testing of the models. When chest x-rays were added to clinical data for severity prediction, area under the receiver operating characteristic curve (ROC-AUC) increased from 0·821 (95% CI 0·796-0·828) to 0·846 (0·815-0·852; p<0·0001) on internal testing and 0·731 (0·712-0·738) to 0·792 (0·780-0 ·803; p<0·0001) on external testing. When deep-learning features were added to clinical data for progression prediction, the concordance index (C-index) increased from 0·769 (0·755-0·786) to 0·805 (0·800-0·820; p<0·0001) on internal testing and 0·707 (0·695-0·729) to 0·752 (0·739-0·764; p<0·0001) on external testing. The image and clinical data combined model had significantly better prognostic performance than combined severity scores and clinical data on internal testing (C-index 0·805 vs 0·781; p=0·0002) and external testing (C-index 0·752 vs 0·715; p<0·0001). INTERPRETATION: In patients with COVID-19, artificial intelligence based on chest x-rays had better prognostic performance than clinical data or radiologist-derived severity scores. Using artificial intelligence, chest x-rays can augment clinical data in predicting the risk of progression to critical illness in patients with COVID-19. FUNDING: Brown University, Amazon Web Services Diagnostic Development Initiative, Radiological Society of North America, National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.


Asunto(s)
Inteligencia Artificial , COVID-19/fisiopatología , Pronóstico , Radiografía Torácica , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Estados Unidos , Adulto Joven
13.
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33739635

RESUMEN

OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.


Asunto(s)
COVID-19/diagnóstico , Aprendizaje Automático , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X/métodos , Enfermedad Crítica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , SARS-CoV-2/patogenicidad
14.
Eur Radiol ; 31(7): 4960-4971, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33052463

RESUMEN

OBJECTIVES: There currently lacks a noninvasive and accurate method to distinguish benign and malignant ovarian lesion prior to treatment. This study developed a deep learning algorithm that distinguishes benign from malignant ovarian lesion by applying a convolutional neural network on routine MR imaging. METHODS: Five hundred forty-five lesions (379 benign and 166 malignant) from 451 patients from a single institution were divided into training, validation, and testing set in a 7:2:1 ratio. Model performance was compared with four junior and three senior radiologists on the test set. RESULTS: Compared with junior radiologists averaged, the final ensemble model combining MR imaging and clinical variables had a higher test accuracy (0.87 vs 0.64, p < 0.001) and specificity (0.92 vs 0.64, p < 0.001) with comparable sensitivity (0.75 vs 0.63, p = 0.407). Against the senior radiologists averaged, the final ensemble model also had a higher test accuracy (0.87 vs 0.74, p = 0.033) and specificity (0.92 vs 0.70, p < 0.001) with comparable sensitivity (0.75 vs 0.83, p = 0.557). Assisted by the model's probabilities, the junior radiologists achieved a higher average test accuracy (0.77 vs 0.64, Δ = 0.13, p < 0.001) and specificity (0.81 vs 0.64, Δ = 0.17, p < 0.001) with unchanged sensitivity (0.69 vs 0.63, Δ = 0.06, p = 0.302). With the AI probabilities, the junior radiologists had higher specificity (0.81 vs 0.70, Δ = 0.11, p = 0.005) but similar accuracy (0.77 vs 0.74, Δ = 0.03, p = 0.409) and sensitivity (0.69 vs 0.83, Δ = -0.146, p = 0.097) when compared with the senior radiologists. CONCLUSIONS: These results demonstrate that artificial intelligence based on deep learning can assist radiologists in assessing the nature of ovarian lesions and improve their performance. KEY POINTS: • Artificial Intelligence based on deep learning can assess the nature of ovarian lesions on routine MRI with higher accuracy and specificity than radiologists. • Assisted by the deep learning model's probabilities, junior radiologists achieved better performance that matched those of senior radiologists.


Asunto(s)
Aprendizaje Profundo , Quistes Ováricos , Neoplasias Ováricas , Inteligencia Artificial , Femenino , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neoplasias Ováricas/diagnóstico por imagen , Sensibilidad y Especificidad
15.
J Popul Ther Clin Pharmacol ; 27(S Pt 1): e53-e57, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32757541

RESUMEN

During the COVID-19 pandemic, most citizens in North America receive daily updates, which highlight the number of new cases per day in a specified region. However, as this data metric is often presented alone on media and news platforms, the spread of the novel coronavirus may often be misinterpreted. Among these daily updates which are critical to informing the public, the authors emphasize the importance of controlling for variation attributed to changes in surveillance. The number of test results that have been analyzed each day along with the total number of tests being conducted in a region have a significant impact on capturing virus spread and should always be included in widespread data. Presenting these variables may help to differentiate increases or decreases of new cases attributed to the expansion of surveillance and testing, or rather other environmental and behavioral factors. Overall, to best inform politicians, healthcare workers, and all citizens of the progress against COVID-19, there is a need to constantly improve analyses and reporting of data.


Asunto(s)
Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/epidemiología , Difusión de la Información/métodos , Neumonía Viral/epidemiología , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , América del Norte/epidemiología , Pandemias , Neumonía Viral/diagnóstico , Vigilancia de la Población/métodos
16.
Radiology ; 296(3): E156-E165, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32339081

RESUMEN

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Radiólogos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Niño , Preescolar , China , Diagnóstico Diferencial , Femenino , Humanos , Lactante , Recién Nacido , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Pandemias , Philadelphia , Neumonía/diagnóstico por imagen , Radiografía Torácica , Radiólogos/normas , Radiólogos/estadística & datos numéricos , Estudios Retrospectivos , Rhode Island , SARS-CoV-2 , Sensibilidad y Especificidad , Adulto Joven
17.
Radiology ; 296(2): E46-E54, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32155105

RESUMEN

Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.


Asunto(s)
Betacoronavirus , Competencia Clínica , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Radiólogos/normas , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
18.
Artículo en Vietnamita | WPRIM (Pacífico Occidental) | ID: wpr-6408

RESUMEN

Lead (Pb) and cadmium (Cd) in milk were determined by atomic absorption spectrometry, using milk sample inorganication on sand-separated stove and sample inorganication equipment with graphit-Digi PREP Jr heat stabilization system. Results: sample inorganication equipment with heat stabilization system has the advantage of saving chemical and time. Atomic absorption spectrometry method and atomization technique in graphite furnace combined with Zeeman standardization technique allows determining Pb and Cd with limits of 0.0005 μg/ml and 0.005 μg/ml, respectively. This method has been used to check the quality of milk in general as well as to evaluate the effect of Pb and Cd contamination in epidemiology


Asunto(s)
Leche , Plomo , Cadmio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...