Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
MethodsX ; 12: 102687, 2024 Jun.
Article En | MEDLINE | ID: mdl-38617897

This work is dedicated to developing a laboratory method for assessing emissions of polycyclic aromatic hydrocarbons (PAHs) from different carbon-based materials at elevated temperatures. The method will additionally contribute to enhancing the fundamental knowledge about the formation and decomposition of these compounds during various process conditions. Developing a method entails designing a setup for laboratory-scale experiments utilizing different furnace configurations and off-gas capturing media. To demonstrate the method's applicability, different carbon materials were tested under identical conditions, and analysis results for the same material in different furnace setups were compared. In this article, we have focused on the procedure for obtaining the "fingerprint" of PAH emissions under conditions characteristic of industrial processes.•Two setups for investigation of the influence of temperature on PAH emissions were designed and tested for three types of carbon materials.•The collected off-gas samples underwent analysis in two different laboratories to capture intra-laboratory differences and to evaluate the significance of the instrument detection limit.•The results of PAH 16 (16 EPA PAH) and PAH 42 analysis were compared to showcase the influence of the expanded list on the overall emission of PAH. The novel methodology enables the determination and comparison of PAH emissions during the thermal treatment of individual carbon materials under laboratory conditions. This could potentially be a new approach for predicting the PAH emissions in metallurgical industries that use these carbon materials as reducing agents in their processes and their control by optimizing process parameters and raw materials used. In addition to being suitable for simulating various conditions in the metallurgical industry, the utilization of low-hazard PAH solvents makes it a promising method.

2.
Waste Manag ; 182: 11-20, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38626501

Recycling aluminium in a rotary furnace with salt-fluxes allows recovering valuable alloys from hard-to-recycle waste/side-streams such as packaging, dross and incinerator bottom ash. However, this recycling route generates large amounts of salt-slag/salt-cake hazardous wastes which can pose critical environmental risks if landfilled. To tackle this issue, the metallurgical industry has developed processes to valorise the salt-slag residues into recyclable salts and aluminium concentrates, while producing by-products such as ammonium sulphate and non-metallic compounds (NMCs), with applications in the construction or chemical industries. This study aims to assess through LCA the environmental impacts of recycling aluminium in rotary furnaces for both salt-slag management routes: valorisation or landfill. It was found that this recycling process brings forth considerable net environmental profits, which increase for all the considered impact categories if the salt-slag is valorised. The main benefits arise from the production of secondary cast aluminium alloys, which is not unexpected due to the high energy intensity of aluminium primary production. However, the LCA results also identify other hotspots which play a significant role, and which should be considered for the optimisation of the process based on its environmental performance, such as the production of by-products, the consumption of energy/fuels and the avoidance of landfilling waste. Additionally, the assessment shows that the indicators for mineral resource scarcity, human carcinogenic toxicity and terrestrial ecotoxicity are particularly benefited by the salt-slag valorisation. Finally, a sensitivity analysis illustrates the criticality of the metal yield assumptions when calculating the global warming potential of aluminium recycling routes.


Aluminum , Incineration , Recycling , Incineration/methods , Recycling/methods , Aluminum/chemistry , Aluminum/analysis , Environment , Industrial Waste/analysis , Metallurgy
3.
Materials (Basel) ; 17(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38541456

High-temperature wetting of natural, high-purity quartz (SiO2) and liquid magnesium (Mg) was investigated at temperatures between 973 and 1273 K. Sessile drop experiments using the capillary purification (CP) procedure were carried out under an Ar gas atmosphere (N6.0), eliminating the native oxide layer on the surface of Mg melt. The results showed that the wetting behavior was strongly dependent on temperature. At 973 and 1073 K, the wetting system displayed relatively large contact angles of 90° and 65°, respectively, demonstrating modest wetting. The wetting increased to some extent by increasing the temperature to 1123 K with a wetting angle of 22°. However, the SiO2/Mg system demonstrated complete wetting at temperatures of 1173 K and above. Furthermore, interface microstructure examination showed different reaction product phases/microstructures, depending on the wetting experiment temperature.

4.
Materials (Basel) ; 16(16)2023 Aug 08.
Article En | MEDLINE | ID: mdl-37629812

Two widely used atomic layer deposition precursors, Tetrakis (dimethylamido) titanium (TDMA-Ti) and titanium tetrachloride (TiCl4), were investigated for use in the deposition of TiOx-based thin films as a passivating contact material for solar cells. This study revealed that both precursors are suited to similar deposition temperatures (150 °C). Post-deposition annealing plays a major role in optimising the titanium oxide (TiOx) film passivation properties, improving minority carrier lifetime (τeff) by more than 200 µs. Aluminium oxide deposited together with titanium oxide (AlOy/TiOx) reduced the sheet resistance by 40% compared with pure TiOx. It was also revealed that the passivation quality of the (AlOy/TiOx) stack depends on the precursor and ratio of AlOy to TiOx deposition cycles.

5.
Materials (Basel) ; 16(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37297229

Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1-4) in the temperature range of 1073 to 1373 K with different reaction times (10-240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.

6.
ACS Omega ; 8(20): 18116-18121, 2023 May 23.
Article En | MEDLINE | ID: mdl-37251142

Coal tar pitch, a well-known source of polycyclic aromatic hydrocarbons (PAHs), is used as a binder of petroleum coke in prebaked anodes used for electrolysis of aluminum. Anodes are baked up to 1100 °C over a 20-day period, where flue gas containing PAHs and volatile organic compounds (VOCs) are treated using techniques such as regenerative thermal oxidation, quenching, and washing. Conditions during baking facilitate incomplete combustion of PAHs, and due to the various structures and properties of PAHs, the effect of temperature up to 750 °C and various atmospheres during pyrolysis and combustion were tested. PAH emissions from green anode paste (GAP) dominate in the temperature interval of 251-500 °C, where PAH species of 4-6 rings make up the majority of the emission profile. During pyrolysis in argon atmosphere, a total of 1645 µg EPA-16 PAHs are emitted per gram of GAP. Adding 5 and 10% CO2 to the inert atmosphere does not seem to affect the PAH emission level significantly, at 1547 and 1666 µg/g, respectively. When adding oxygen, concentrations decreased to 569 µg/g and 417 µg/g for 5% and 10% O2, respectively, corresponding to a 65% and 75% decrease in emission.

7.
MethodsX ; 10: 102105, 2023.
Article En | MEDLINE | ID: mdl-36970024

This work is dedicated to developing a method of combined surface morphology- and crystallographic analysis for crystalline silicon. To demonstrate the applicability of the method, a series of chemical operations, such as polishing and texturing, were applied to multi-crystalline silicon samples. The samples were pre- and post-analysed with WLI and Laue techniques, and the experimental data allowed construction of maps for crystal orientation to etching rate dependency. The study illustrates the strengths of the combinatory technique as an alternative to existing techniques such as atom force microscopy (AFM) and electron backscatter diffraction (EBSD).•Combination of LAUE tool and white light interferometry techniques.•Alternative time-effective method to EBSD.•Analysis of surface morphology and crystallographic properties for chemical processing.

8.
Materials (Basel) ; 15(19)2022 Sep 21.
Article En | MEDLINE | ID: mdl-36233875

In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity.

9.
Waste Manag ; 130: 65-73, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-34051605

The increasing use of aluminimum in packaging applications results in many different aluminium-based products ending up in consumer mixed-waste bins. This waste is typically incinerated, generating an aluminium-containing bottom ash. The current work investigates the recyclability of the aluminium fraction in the bottom ash from waste incineration plants in the USA, UK and Denmark. Incinerated Al-samples from different size fractions (2-6 mm, 6-12 mm and 12-30 mm) were characterized in terms of inherent oxide thickness, re-melting yield/coagulation and composition. The measured average oxide thickness on Al particles was 68 µm (SD=100), with the metal yield and coagulation efficiency measured to between 76 and 92% and 87-99% respectively. Larger particle size fractions resulted in a higher metal yield due to their higher mass to surface ratio. A simplified model correlating metal yield and particle size was proposed. The aluminium content of the melted material was determined to between 95.6 and 98.5% with main impurities being Fe, Si, Mn, Zn, Mg and Cu, corresponding to major aluminium alloying elements and waste charge components.


Aluminum , Coal Ash , Aluminum/analysis , Incineration , Metals , Product Packaging , Solid Waste
10.
Sci Rep ; 5: 17403, 2015 Dec 02.
Article En | MEDLINE | ID: mdl-26627680

The ecological success of diatoms is emphasized by regular blooms of many different species in all aquatic systems, but the reason behind their success is not fully understood. A special feature of the diatom cell is the frustule, a nano-patterned cell encasement made of amorphous biosilica. The optical properties of a cleaned single valve (one half of a frustule) from the diatom Coscinodiscus centralis were studied using confocal micro-spectroscopy. A photonic crystal function in the frustule was observed, and analysis of the hyperspectral mapping revealed an enhancement of transmitted light around 636 and 663 nm. These wavelengths match the absorption maxima of chlorophyll a and c, respectively. Additionally, we demonstrate that a highly efficient light trapping mechanism occurred, resulting from strong asymmetry between the cribrum and foramen pseudo-periodic structures. This effect may prevent transmitted light from being backscattered and in turn enhance the light absorption. Based on our results, we hypothesize that the multi-scaled layered structure of the frustule improves photosynthetic efficiency by these three mechanisms. The optical properties of the frustule described here may contribute to the ecological success of diatoms in both lentic and marine ecosystems, and should be studies further in vivo.


Diatoms , Ecosystem , Light , Nanostructures , Photosynthesis/physiology , Silicon Dioxide , Diatoms/chemistry , Diatoms/metabolism , Diatoms/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism
11.
J Occup Environ Hyg ; 12(1): 37-44, 2015.
Article En | MEDLINE | ID: mdl-25380385

The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 µm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm - 10 µm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 µm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols.


Air Pollutants, Occupational/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Metallurgy , Particle Size , Particulate Matter/analysis , Alloys/analysis , Environmental Monitoring/instrumentation , Microscopy, Electron, Scanning/methods , Occupational Exposure/analysis , Static Electricity
...