Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Lancet Microbe ; 5(7): 633-644, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705163

RESUMEN

BACKGROUND: Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS: In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS: Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION: These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Amodiaquina , Antimaláricos , Combinación Arteméter y Lumefantrina , Combinación de Medicamentos , Fluorenos , Malaria Falciparum , Plasmodium falciparum , Primaquina , Pirimetamina , Sulfadoxina , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Pirimetamina/uso terapéutico , Pirimetamina/administración & dosificación , Amodiaquina/uso terapéutico , Amodiaquina/administración & dosificación , Sulfadoxina/uso terapéutico , Sulfadoxina/administración & dosificación , Masculino , Adulto , Femenino , Adolescente , Niño , Malaria Falciparum/transmisión , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Método Simple Ciego , Persona de Mediana Edad , Primaquina/uso terapéutico , Primaquina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación Arteméter y Lumefantrina/administración & dosificación , Adulto Joven , Fluorenos/administración & dosificación , Fluorenos/uso terapéutico , Malí/epidemiología , Plasmodium falciparum/efectos de los fármacos , Artemisininas/administración & dosificación , Artemisininas/uso terapéutico , Aminoquinolinas/administración & dosificación , Aminoquinolinas/uso terapéutico , Aminoquinolinas/efectos adversos , Etanolaminas/administración & dosificación , Etanolaminas/uso terapéutico , Animales , Quimioterapia Combinada
2.
Lancet Infect Dis ; 23(11): 1266-1279, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37499679

RESUMEN

BACKGROUND: Malaria transmission-blocking vaccines target mosquito-stage parasites and will support elimination programmes. Gamete vaccine Pfs230D1-EPA/Alhydrogel induced superior activity to zygote vaccine Pfs25-EPA/Alhydrogel in malaria-naive US adults. Here, we compared these vaccines in malaria-experienced Malians. METHODS: We did a pilot safety study then double-blind, block-randomised, comparator-controlled main-phase trial in malaria-intense Bancoumana, Mali. 18-50-year-old healthy non-pregnant, non-breastfeeding consenting adult residents were randomly assigned (1:1:1:1) to receive four doses at months 0, 1, 4·5, and 16·5 of either 47 µg Pfs25, 40 µg Pfs230D1 or comparator (Twinrix or Menactra)-all co-administered with normal saline for blinding-or 47 µg Pfs25 plus 40 µg Pfs230D1 co-administered. We documented safety and tolerability (primary endpoint in the as-treated populations) and immunogenicity (secondary endpoint in the as-treated populations: ELISA, standard-membrane-feeding assay, and mosquito direct skin feed assay). This trial is registered at ClinicalTrials.gov, NCT02334462. FINDINGS: Between March 19, and June 2, 2015, we screened 471 individuals. Of 225 enrolled for the pilot and main cohorts, we randomly assigned 25 participants to pilot safety cohort groups of five (20%) to receive a two-dose series of Pfs25-EPA/Alhydrogel (16 µg), Pfs230D1-EPA/Alhydrogel (15 µg) or comparator, followed by Pfs25-EPA/Alhydrogel (16 µg) plus Pfs230D1-EPA/Alhydrogel (15 µg) or comparator plus saline. For the main cohort, we enrolled 200 participants between May 11 and June 2, 2015, to receive a four-dose series of 47 µg Pfs25-EPA/Alhydrogel plus saline (n=50 [25%]; Pfs25), 40 µg Pfs230D1-EPA/Alhydrogel plus saline (n=49 [25%]; Pfs230D1), 47 µg Pfs25-EPA/Alhydrogel plus 40 µg Pfs230D1-EPA/Alhydrogel (n=50 [25%]; Pfs25 plus Pfs230D1), or comparator (Twinrix or Menactra) plus saline (n=51 [25%]). Vaccinations were well tolerated in the pilot safety and main phases. Most vaccinees became seropositive after two Pfs230D1 or three Pfs25 doses; peak titres increased with each dose thereafter (Pfs230D1 geometric mean: 77·8 [95% CI 56·9-106·3], 146·4 [108·3-198·0], and 410·2 [301·6-558·0]; Pfs25 geometric mean 177·7 [130·3-242·4] and 315·7 [209·9-474·6]). Functional activity (mean peak transmission-reducing activity) appeared for Pfs230D1 (74·5% [66·6-82·5]) and Pfs25 plus Pfs230D1 (68·6% [57·3-79·8]), after the third dose and after the fourth dose (88·9% [81·7-96·2] for Pfs230D1 and 85·0% [78·4-91·5] Pfs25 plus Pfs230D1) but not for Pfs25 (58·2% [49·1-67·3] after the third dose and 58·2% [48·5-67·9] after the fourth dose). Pfs230D1 transmission-reducing activity (73·7% [64·1-83·3]) persisted 10 weeks after the fourth dose. Transmission-reducing activity of 80% was estimated at 1659 ELISA units for Pfs25, 218 for Pfs230D1, and 223 for Pfs230D1 plus Pfs25. After 3850 direct skin feed assays, 35 participants (12 Pfs25, eight Pfs230D1, five Pfs25 plus Pfs230D1, and ten comparator) had transmitted parasites at least once. The proportion of positive assays in vaccine groups (Pfs25 33 [3%] of 982 [-0·013 to 0·014], Pfs230D1 22 [2%] of 954 [-0·005 to 0·027], and combination 11 [1%] of 940 [-0·024 to 0·002]) did not differ from that of the comparator (22 [2%] of 974), nor did Pfs230D1 and combination groups differ (-0·024 to 0·001). INTERPRETATION: Pfs230D1 but not Pfs25 vaccine induces durable serum functional activity in Malian adults. Direct skin feed assays detect parasite transmission to mosquitoes but increased event rates are needed to assess vaccine effectiveness. FUNDING: Intramural Research Program of the National Institute of Allergy and Infectious Diseases and US National Institutes of Health.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Vacunas Meningococicas , Animales , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Hidróxido de Aluminio , Plasmodium falciparum , Vacunas contra la Malaria/efectos adversos , Método Doble Ciego , Inmunogenicidad Vacunal
3.
Malar J ; 21(1): 372, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474274

RESUMEN

BACKGROUND: In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS: A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS: Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS: Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.


Asunto(s)
Plasmodium falciparum , Humanos , Malí
4.
Am J Trop Med Hyg ; 107(4_Suppl): 84-89, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228908

RESUMEN

The Mali National Malaria Control Program (NMCP) recently established a phased set of goals for eliminating malaria in Mali by 2030. Over the past decade, the scale-up of NMCP-led malaria control interventions has led to considerable progress, as evidenced by multiple malariometric indicators. The West Africa International Center of Excellence in Malaria Research (WA-ICEMR) is a multidisciplinary research program that works closely with the NMCP and its partners to address critical research needs for malaria control. This coordinated effort includes assessing the effectiveness of control interventions based on key malaria research topics, including immune status, parasite genetic diversity, insecticide and drug resistance, diagnostic accuracy, malaria vector populations and biting behaviors, and vectorial capacity. Several signature accomplishments of the WA-ICEMR include identifying changing malaria age demographic profiles, testing innovative approaches to improve control strategies, and providing regular reporting on drug and insecticide resistance status. The NMCP and WA-ICEMR partnership between the WA-ICEMR and the NMCP offers a comprehensive research platform that informs the design and implementation of malaria prevention and control research programs. These efforts build local expertise and capacity for the next generation of malaria researchers and guide local policy, which is crucial in sustaining efforts toward eliminating malaria in West Africa.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/parasitología , Clorfentermina/análogos & derivados , Humanos , Insecticidas/uso terapéutico , Cooperación Internacional , Malaria/tratamiento farmacológico , Malí/epidemiología , Mosquitos Vectores , Políticas
5.
Am J Trop Med Hyg ; 107(4_Suppl): 75-83, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228923

RESUMEN

This article highlights over a decade of signature achievements by the West Africa International Centers for Excellence in Malaria Research (WA-ICEMR) and its partners toward guiding malaria prevention and control strategies. Since 2010, the WA-ICEMR has performed longitudinal studies to monitor and assess malaria control interventions with respect to space-time patterns, vector transmission indicators, and drug resistance markers. These activities were facilitated and supported by the Mali National Malaria Control Program. Research activities included large-scale active and passive surveillance and expanded coverage of universal long-lasting insecticide-treated bed nets and seasonal malaria chemoprevention (SMC). The findings revealed substantial declines in malaria occurrence after the scale-up of control interventions in WA-ICEMR study sites. WA-ICEMR studies showed that SMC using sulfadoxine-pyrimethamine plus amodiaquine was highly effective in preventing malaria among children under 5 years of age. An alternative SMC regimen (dihydroartemisinin plus piperaquine) was shown to be potentially more effective and provided advantages for acceptability and compliance over the standard SMC regimen. Other findings discussed in this article include higher observed multiplicity of infection rates for malaria in historically high-endemic areas, continued antimalarial drug sensitivity to Plasmodium falciparum, high outdoor malaria transmission rates, and increased insecticide resistance over the past decade. The progress achieved by the WA-ICEMR and its partners highlights the critical need for maintaining current malaria control interventions while developing novel strategies to disrupt malaria transmission. Enhanced evaluation of these strategies through research partnerships is particularly needed in the wake of reported artemisinin resistance in Southeast Asia and East Africa.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología
6.
Lancet Microbe ; 3(5): e336-e347, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544095

RESUMEN

BACKGROUND: Tafenoquine was recently approved as a prophylaxis and radical cure for Plasmodium vivax infection, but its Plasmodium falciparum transmission-blocking efficacy is unclear. We aimed to establish the efficacy and safety of three single low doses of tafenoquine in combination with dihydroartemisinin-piperaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: In this four-arm, single-blind, phase 2, randomised controlled trial, participants were recruited at the Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako in Mali. Eligible participants were aged 12-50 years, with asymptomatic P falciparum microscopy-detected gametocyte carriage, had a bodyweight of 80 kg or less, and had no clinical signs of malaria defined by fever. Participants were randomly assigned (1:1:1:1) to standard treatment with dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus a single dose of tafenoquine (in solution) at a final dosage of 0·42 mg/kg, 0·83 mg/kg, or 1·66 mg/kg. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. Dihydroartemisinin-piperaquine was administered as oral tablets over 3 days (day 0, 1, and 2), as per manufacturer instructions. A single dose of tafenoquine was administered as oral solution on day 0 in parallel with the first dose of dihydroartemisinin-piperaquine. Tafenoquine dosing was based on bodyweight to standardise efficacy and risk variance. The primary endpoint, assessed in the per-protocol population, was median percentage change in mosquito infection rate 7 days after treatment compared with baseline. Safety endpoints included frequency and incidence of adverse events. The final follow-up visit was on Dec 23, 2021; the trial is registered with ClinicalTrials.gov, NCT04609098. FINDINGS: From Oct 29 to Nov 25, 2020, 1091 individuals were screened for eligibility, 80 of whom were enrolled and randomly assigned (20 per treatment group). Before treatment, 53 (66%) individuals were infectious to mosquitoes, infecting median 12·50% of mosquitoes (IQR 3·64-35·00). Within-group reduction in mosquito infection rate on day 7 was 79·95% (IQR 57·15-100; p=0·0005 for difference from baseline) following dihydroartemisinin-piperaquine only, 100% (98·36-100; p=0·0005) following dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg, 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg, and 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg. 55 (69%) of 80 participants had a total of 94 adverse events over the course of the trial; 86 (92%) adverse events were categorised as mild, seven (7%) as moderate, and one (1%) as severe. The most common treatment-related adverse event was mild or moderate headache, which occurred in 15 (19%) participants (dihydroartemisinin-piperaquine n=2; dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg n=6; dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg n=3; and dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg n=4). No serious adverse events occurred. No significant differences in the incidence of all adverse events (p=0·73) or treatment-related adverse events (p=0·62) were observed between treatment groups. INTERPRETATION: Tafenoquine was well tolerated at all doses and accelerated P falciparum gametocyte clearance. All tafenoquine doses showed improved transmission reduction at day 7 compared with dihydroartemisinin-piperaquine alone. These data support the case for further research on tafenoquine as a transmission-blocking supplement to standard antimalarials. FUNDING: Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Portuguese, Spanish and Swahili translations of the abstract see Supplementary Materials section.


Asunto(s)
Artemisininas , Malaria Falciparum , Malaria , Aminoquinolinas , Animales , Artemisininas/efectos adversos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malí/epidemiología , Piperazinas , Plasmodium falciparum , Quinolinas , Método Simple Ciego
7.
Am J Trop Med Hyg ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226866

RESUMEN

There is a need for better tools to monitor the transmission of lymphatic filariasis and malaria in areas undergoing interventions to interrupt transmission. Therefore, mosquito collection methods other than human landing catch (HLC) are needed. This study aimed to compare the Ifakara tent trap type C (ITTC) and the Biogents sentinel trap (BGST) to the HLC in areas with different vector densities. Mosquitoes were collected in two villages in Mali from July to December in 2011 and 2012. The three methods were implemented at each site with one ITTC, one BGST, and one HLC unit that consisted of one room with two collectors-one indoor and the other outdoor. The Anopheles collected in 2011 were individually dissected, whereas those from 2012 were screened in pools using reverse transcription-polymerase chain reaction (RT-PCR) to determine the maximum infection prevalence likelihood (MIPL) for Wuchereria bancrofti and Plasmodium falciparum. The dissection of the females also allowed to assess the parity rates, as well its results. Over the 2 years, the HLC method collected 1,019 Anopheles, yields that were 34- and 1.5-fold higher than those with the BGST and ITTC, respectively. None of the dissected Anopheles were infected. The RT-PCR results showed comparable MIPL between HLC and ITTC for W. bancrofti with one infected pool from each trap's yield (respectively 0.03% [0.0009-0.2%] and 0.04% [0.001-0.2%]). For P. falciparum, no infected pool was recovered from BGST. The ITTC is a good alternative to HLC for xenomonitoring of program activities.

8.
Malar J ; 21(1): 65, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197053

RESUMEN

BACKGROUND: Over the past decade, three strategies have reduced severe malaria cases and deaths in endemic regions of Africa, Asia and the Americas, specifically: (1) artemisinin-based combination therapy (ACT); (2) insecticide-treated bed nets (ITNs); and, (3) intermittent preventive treatment with sulfadoxine-pyrimethamine in pregnancy (IPTp). The rationale for this study was to examine communities in Dangassa, Mali where, in 2015, two additional control strategies were implemented: ITN universal coverage and seasonal malaria chemoprevention (SMC) among children under 5 years old. METHODS: This was a prospective study based on a rolling longitudinal cohort of 1401 subjects participating in bi-annual smear surveys for the prevalence of asymptomatic Plasmodium falciparum infection and continuous surveillance for the incidence of human disease (uncomplicated malaria), performed in the years from 2012 to 2020. Entomological collections were performed to examine the intensity of transmission based on pyrethroid spray catches, human landing catches and enzyme-linked immunosorbent assay (ELISA) testing for circumsporozoite antigen. RESULTS: A total of 1401 participants of all ages were enrolled in the study in 2012 after random sampling of households from the community census list. Prevalence of infection was extremely high in Dangassa, varying from 9.5 to 62.8% at the start of the rainy season and from 15.1 to 66.7% at the end of the rainy season. Likewise, the number of vectors per house, biting rates, sporozoites rates, and entomological inoculation rates (EIRs) were substantially greater in Dangassa. DISCUSSION: The findings for this study are consistent with the progressive implementation of effective malaria control strategies in Dangassa. At baseline (2012-2014), prevalence of P. falciparum was above 60% followed by a significant year-to-year decease starting in 2015. Incidence of uncomplicated infection was greater among children < 5 years old, while asymptomatic infection was more frequent among the 5-14 years old. A significant decrease in EIR was also observed from 2015 to 2020. Likewise, vector density, sporozoite rates, and EIRs decreased substantially during the study period. CONCLUSION: Efficient implementation of two main malaria prevention strategies in Dangassa substantially contribute to a reduction of both asymptomatic and symptomatic malaria from 2015 to 2020.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria Falciparum , Malaria , Adolescente , Niño , Preescolar , Humanos , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Estudios Prospectivos
9.
Lancet Microbe ; 3(1): e41-e51, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028628

RESUMEN

BACKGROUND: Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS: Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION: These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.


Asunto(s)
Antimaláricos , Malaria Falciparum , Adolescente , Adulto , Animales , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Humanos , Malaria Falciparum/prevención & control , Malí/epidemiología , Persona de Mediana Edad , Naftiridinas/uso terapéutico , Piperazinas , Primaquina/uso terapéutico , Quinolinas , Método Simple Ciego , Adulto Joven
10.
Am J Trop Med Hyg ; 106(2): 648-654, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34781256

RESUMEN

Seasonal malaria chemoprevention (SMC) was adopted in Mali in 2012 for preventing malaria in children younger than 5 years. Although this strategy has been highly effective in reducing childhood malaria, an uptick in malaria occurrence has occurred in children 5 to 15 years of age. This study aimed to investigate the feasibility of providing SMC to older children. A cohort of 350 children age 5 to 14 years were monitored during the 2019 transmission season in Dangassa, Mali. The intervention group received five monthly rounds of sulfadoxine-pyrimethamine plus amodiaquine, whereas the control group consisted of untreated children. Community acceptance for extending SMC was assessed during the final round. Logistic regression models were applied to compare the risk of Plasmodium falciparum malaria infection, anemia, and fever between the intervention and control groups. Kaplan-Meier survival analyses were used to compare the time to P. falciparum parasitemia infection between the groups. The community acceptance rate was 96.5% (139 of 144). Significant declines were observed in the prevalence of P. falciparum parasitemia (adjusted odds ratio, 0.22; 95% CI, 0.11-0.42) and anemia (adjusted odds ratio, 0.15; 95% CI, 0.07-0.28) in the intervention group compared with the control group. The cumulative incidence of P. falciparum infections was significantly greater (75.4%, 104 of 138) in the control group compared with the intervention group (40.7%, 61 of 143, P = 0.001). This study reveals that expanding SMC to older children is likely feasible, has high community acceptance, and is in reducing uncomplicated malaria and anemia in older children.


Asunto(s)
Antimaláricos/uso terapéutico , Quimioprevención/normas , Malaria/prevención & control , Aceptación de la Atención de Salud , Salud Pública/métodos , Estaciones del Año , Adolescente , Quimioprevención/métodos , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Incidencia , Malaria/tratamiento farmacológico , Masculino , Malí/epidemiología , Prevalencia , Salud Pública/normas , Factores de Riesgo
11.
Clin Case Rep ; 9(5): e04065, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34084490

RESUMEN

Friedreich ataxia is the most common inherited ataxia in the world, but yet to be reported in black African. We report the first genetically confirmed case in a West African family. Studying genetic diseases in populations with diverse backgrounds may give new insights into their pathophysiology for future therapeutic targets.

12.
PLoS Negl Trop Dis ; 15(6): e0009448, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34106920

RESUMEN

BACKGROUND: In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS: To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE: Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.


Asunto(s)
Brugia Malayi/inmunología , Proteínas de Insectos/inmunología , Monocitos/parasitología , Phlebotomus/inmunología , Saliva/inmunología , Inmunidad Adaptativa , Animales , Células Cultivadas , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Coinfección , Enfermedades Endémicas , Filariasis/complicaciones , Filariasis/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inmunidad Celular , Leishmaniasis Cutánea/complicaciones , Leishmaniasis Cutánea/inmunología , Lipopolisacáridos/toxicidad , Malí , Monocitos/fisiología , ARN Mensajero , Proteínas Recombinantes , Glándulas Salivales , Linfocitos T Colaboradores-Inductores
13.
Front Microbiol ; 12: 635772, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054746

RESUMEN

Exposure of mosquitoes to numerous eukaryotic and prokaryotic microbes in their associated microbiomes has probably helped drive the evolution of the innate immune system. To our knowledge, a metagenomic catalog of the eukaryotic microbiome has not been reported from any insect. Here we employ a novel approach to preferentially deplete host 18S ribosomal RNA gene amplicons to reveal the composition of the eukaryotic microbial communities of Anopheles larvae sampled in Kenya, Burkina Faso and Republic of Guinea (Conakry). We identified 453 eukaryotic operational taxonomic units (OTUs) associated with Anopheles larvae in nature, but an average of 45% of the 18S rRNA sequences clustered into OTUs that lacked a taxonomic assignment in the Silva database. Thus, the Anopheles microbiome contains a striking proportion of novel eukaryotic taxa. Using sequence similarity matching and de novo phylogenetic placement, the fraction of unassigned sequences was reduced to an average of 4%, and many unclassified OTUs were assigned as relatives of known taxa. A novel taxon of the genus Ophryocystis in the phylum Apicomplexa (which also includes Plasmodium) is widespread in Anopheles larvae from East and West Africa. Notably, Ophryocystis is present at fluctuating abundance among larval breeding sites, consistent with the expected pattern of an epidemic pathogen. Species richness of the eukaryotic microbiome was not significantly different across sites from East to West Africa, while species richness of the prokaryotic microbiome was significantly lower in West Africa. Laboratory colonies of Anopheles coluzzii harbor 26 eukaryotic OTUs, of which 38% (n = 10) are shared with wild populations, while 16 OTUs are unique to the laboratory colonies. Genetically distinct An. coluzzii colonies co-housed in the same facility maintain different prokaryotic microbiome profiles, suggesting a persistent host genetic influence on microbiome composition. These results provide a foundation to understand the role of the Anopheles eukaryotic microbiome in vector immunity and pathogen transmission. We hypothesize that prevalent apicomplexans such as Ophryocystis associated with Anopheles could induce interference or competition against Plasmodium within the vector. This and other members of the eukaryotic microbiome may offer candidates for new vector control tools.

14.
Malar J ; 20(1): 184, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853632

RESUMEN

BACKGROUND: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms. METHODS: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments. RESULTS: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged. CONCLUSIONS: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.


Asunto(s)
Anopheles , Malaria/prevención & control , Control de Mosquitos , Plasmodium/efectos de los fármacos , Azúcares , Animales , Femenino , Insectos/efectos de los fármacos , Malaria/transmisión , Masculino , Malí , Control de Mosquitos/métodos
15.
J Infect Dis ; 223(12 Suppl 2): S81-S90, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906223

RESUMEN

BACKGROUND: Insecticide-based vector control is responsible for reducing malaria mortality and morbidity. Its success depends on a better knowledge of the vector, its distribution, and resistance status to the insecticides used. In this paper, we assessed Anopheles gambiae sensu lato (A gambiae s.l.) population resistance to pyrethroids in different ecological settings. METHODS: The World Health Organization standard bioassay test was used to assess F0A gambiae s.l. susceptibility to pyrethroids. Biochemical Synergist assays were conducted with piperonyl butoxide (PBO), S,S,S-tributyl phosphotritioate, and diethyl maleate. L1014F, L1014S, and N1575Y knockdown resistance (kdr) mutations were investigated using TaqMan genotyping. RESULTS: Anopheles gambiae sensu lato was composed of Anopheles arabienisis, Anopheles coluzzii, and A gambiae in all study sites. Anopheles gambiae sensu lato showed a strong phenotypic resistance to deltamethrin and permethrin in all sites (13% to 41% mortality). In many sites, pre-exposure to synergists partially improved the mortality rate suggesting the presence of detoxifying enzymes. The 3 kdr (L1014F, L1014S, and N1575Y) mutations were found, with a predominance of L1014F, in all species. CONCLUSIONS: Multiple resistance mechanisms to pyrethroids were observed in A gambiae s.l. in Mali. The PBO provided a better partial restoration of susceptibility to pyrethroids, suggesting that the efficacy of long-lasting insecticidal nets may be improved with PBO.


Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Piretrinas/farmacología , Animales , Anopheles/genética , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/genética , Malí , Mosquitos Vectores/genética
16.
Malar J ; 20(1): 127, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663515

RESUMEN

BACKGROUND: Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. METHODS: Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. RESULTS: A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1-4.3]) and indoor collections were 3.1% (95% BCI [2.4-5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7-6.3]) compared with outdoors at 2.4% (95% BCI [1.1-4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21-19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55-25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34-2.72] ib/p/m and 0.94 [95% BCI 0.43-1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. CONCLUSION: The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


Asunto(s)
Anopheles/fisiología , Malaria Falciparum/transmisión , Mosquitos Vectores/fisiología , Plasmodium falciparum/aislamiento & purificación , Adulto , Animales , Biodiversidad , Ambiente , Conducta Alimentaria , Femenino , Humanos , Masculino , Malí , Población Rural , Esporozoítos/aislamiento & purificación , Adulto Joven
17.
Malar J ; 20(1): 151, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731111

RESUMEN

BACKGROUND: Attractive targeted sugar baits (ATSBs) are a promising new tool for malaria control as they can target outdoor-feeding mosquito populations, in contrast to current vector control tools which predominantly target indoor-feeding mosquitoes. METHODS: It was sought to estimate the potential impact of these new tools on Plasmodium falciparum malaria prevalence in African settings by combining data from a recent entomological field trial of ATSBs undertaken in Mali with mathematical models of malaria transmission. The key parameter determining impact on the mosquito population is the excess mortality due to ATSBs, which is estimated from the observed reduction in mosquito catch numbers. A mathematical model capturing the life cycle of P. falciparum malaria in mosquitoes and humans and incorporating the excess mortality was used to estimate the potential epidemiological effect of ATSBs. RESULTS: The entomological study showed a significant reduction of ~ 57% (95% CI 33-72%) in mosquito catch numbers, and a larger reduction of ~ 89% (95% CI 75-100%) in the entomological inoculation rate due to the fact that, in the presence of ATSBs, most mosquitoes do not live long enough to transmit malaria. The excess mortality due to ATSBs was estimated to be lower (mean 0.09 per mosquito per day, seasonal range 0.07-0.11 per day) than the bait feeding rate obtained from one-day staining tests (mean 0.34 per mosquito per day, seasonal range 0.28-0.38 per day). CONCLUSIONS: From epidemiological modelling, it was predicted that ATSBs could result in large reductions (> 30% annually) in prevalence and clinical incidence of malaria, even in regions with an existing high malaria burden. These results suggest that this new tool could provide a promising addition to existing vector control tools and result in significant reductions in malaria burden across a range of malaria-endemic settings.


Asunto(s)
Anopheles/efectos de los fármacos , Malaria Falciparum/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Feromonas/farmacología , Azúcares/farmacología , Animales , Malí , Modelos Biológicos
18.
BMC Public Health ; 21(1): 421, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639923

RESUMEN

BACKGROUND: In Mali, nomadic populations are spread over one third of the territory. Their lifestyle, characterized by constant mobility, excludes them from, or at best places them at the edge of, health delivery services. This study aimed to describe nomadic populations' characteristics, determine their perception on the current health services, and identify issues associated with community-based health interventions. METHODS: To develop a better health policy and strategic approaches adapted to nomadic populations, we conducted a cross-sectional study in the region of Timbuktu to describe the difficulties in accessing health services. The study consisted in administering questionnaires to community members in the communes of Ber and Gossi, in the Timbuktu region, to understand their perceptions of health services delivery in their settings. RESULTS: We interviewed 520 individuals, all members of the nomadic communities of the two study communes. Their median age was 38 years old with extremes ranging from 18 to 86 years old. Their main activities were livestock breeding (27%), housekeeping (26.4%), local trading (11%), farming (6%) and artisans (5.5%). The average distance to the local health center was 40.94 km and 23.19 km respectively in Gossi and Ber. In terms of barriers to access to health care, participants complained mainly about the transportation options (79.4%), the quality of provided services (39.2%) and the high cost of available health services (35.7%). Additionally, more than a quarter of our participants stated that they would not allow themselves to be examined by a health care worker of the opposite gender. CONCLUSION: This study shows that nomadic populations do not have access to community-based health interventions. A number of factors were revealed to be important barriers per these communities' perception including the quality of services, poverty, lifestyle, gender and current health policy strategies in the region. To be successful, future interventions should take these factors into account by adapting policies and methods.


Asunto(s)
Accesibilidad a los Servicios de Salud , Servicios de Salud , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Humanos , Malí , Persona de Mediana Edad , Pobreza , Adulto Joven
19.
Acta Trop ; 216: 105820, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33400915

RESUMEN

Malaria vector control in Mali relies heavily on the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in selected districts. As part of strengthening vector control strategies in Koulikoro district, the National Malaria Control Programme (NMCP) through the support from the US President's Malaria Initiative (PMI) has strategically driven the implementation of IRS, with the LLINs coverage also rising from 93.3% and 98.2%. Due to the increased reports of vector resistance to both pyrethroid and carbamates, there was a campaign for the use of pirimiphos-methyl, an organophosphate at Koulikoro between 2015 and 2016. In this study, the effect of IRS on malaria transmission was assessed, by comparing some key entomological indices between Koulikoro, where IRS was implemented and its neighboring district, Banamba that has never received IRS as vector control intervention. The study was conducted in two villages of each district (Koulikoro and Banamba). Pyrethrum spray catches and entry window trapping were used to collect mosquitoes on a monthly basis. WHO tube tests were carried out to assess mosquito susceptibility to insecticides. Mosquitoes were identified to species level by PCR and their infection to P. falciparum was detected by Enzyme Linked-Immuno-Sorbent Assay (ELISA). Of the 527 specimens identified, An. coluzzii was the most frequent species (95%) followed by An. gambiae (4%) and An. arabiensis (1%). Its density was rainfall dependent in the no-IRS area, and almost independent in the IRS area. The infection rate (IR) in the no-IRS area was 0.96%, while it was null in the IRS area. In the no-IRS area, the entomological inoculation rate (EIR) was 0.21 infective bites /person month with a peak in September. High resistance to pyrethroids and carbamates and susceptibility to organophosphates was observed at all sites. The introduction of pirimiphos-methyl based IRS for vector control resulted in a significant decrease in malaria transmission. An. gambiae s.l., the main malaria vector in the area, was resistant to pyrethroids and carbamates but remained susceptible to the organophosphate pirimiphos-methyl.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/parasitología , Carbamatos/farmacología , Malaria/prevención & control , Malaria/transmisión , Compuestos Organotiofosforados/farmacología , Piretrinas/farmacología , Animales , Anopheles/genética , Vectores de Enfermedades , Femenino , Humanos , Mordeduras y Picaduras de Insectos/parasitología , Resistencia a los Insecticidas , Insecticidas/farmacología , Malí , Tipificación Molecular , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Reacción en Cadena de la Polimerasa
20.
Mali Med ; 36(4): 28-38, 2021.
Artículo en Francés | MEDLINE | ID: mdl-38200726

RESUMEN

AIMS/OBJECTIVES/ASSUMPTION: In Mali, malaria is the leading cause of death and consultations in health facilities. The objective of this study was to examine trends in morbidity and mortality among children aged 0 to 15 years and to establish accurate mapping of the distribution of cases in health areas of the Sélingué health district. MATERIALS AND METHOD: A retrospective analysis of hospital records at the Sélingué district reference health center from 2010 to 2013 was conducted. Trend Chi2 and logistic regression were used, respectively, to compare changes in trends between health areas and to identify risk factors associated with malaria mortality. RESULTS: Among the 1282 cases of malaria, the incidence of severe malaria gradually decreased from 96.75 ‰ (671 cases) in 2010 to 34.23 ‰ (291 cases) in 2011, 19.76 ‰ (168 cases) in 2012 and 19.43 ‰ (152 cases) in 2013. From 2010 to 2013, there was an average monthly variation in October of 26, 6% cerebralmalaria and 23.3% malaria anemia by the month of July of the same year. Spatial variation of anemic forms of malaria between health areas (p < 0.001) was observed from 2010 to 2013. From 2012 to 2013, there was an overall decrease in the frequency of hospitalizations, incidence and death rate for severe malaria. In multivariate analysis, in the final model, malaria lethality was associated with the duration of hospitalization for more than three days (OR = 0.124); the year of hospitalization from 2010 to 2012 (OR = 0.813); the absence of blood transfusion of the patient (OR = 0.282); at the age of the patient in children under one year (OR = 0.356) and at the emergency anti-malarial treatment instituted with artemether (OR = 3.006) adjusting for the form of malaria. On the other hand, malaria lethality was not related to the form of malaria (p = 0.072), sex (p = 0.390), residence (p = 0.308), prior treatment before hospitalization (p = 0.949). at fever in children (p = 0.153) adjusting for other variables in the model. CONCLUSION: Hospital case fatality remains high with a drop in the incidence of morbidity and mortality; a monthly variation in morbidity and mortality with two peaks, July - August and October-November and the emergency treatment instituted with artemether, the length of hospital stay could be identified as associated factors.


BUT/OBJECTIFS/HYPOTHÈSE: Au Mali, le paludisme est la principale cause de décès et de consultations dans les formations sanitaires. L'objectif de cette étude était de déterminer l'incidence de la morbidité et de la mortalité chez les enfants de 0 à 15 ans et d'établir une cartographie précise de la répartition des cas dans les aires de santé du district sanitaire de Sélingué. MATÉRIELS, MÉTHODE: Une analyse rétrospective des dossiers d'hospitalisation des enfants de 0 à 15 ans au niveau du centre de santé de référence du district de Sélingué de 2010 à 2013 a été réalisée. Le test de Chi2 de tendance et la régression logistique ont été utilisés respectivement pour comparer les variations de l'incidence entre les aires de santé et identifier les facteurs de risque associés à la mortalité palustre. RÉSULTATS: Parmi les 1282 cas de paludisme, l 'incidence du paludisme grave a diminué progressivement de 96,75‰ (671 cas) en 2010 à 34,23 ‰ (291 cas) en 2011, 19,76‰ (168 cas) en 2012 et 19,43‰ (152 cas) en 2013 (Chi2 de tendance p < 0,001). La létalité palustre a été de 15,13%, et n'a pas significativement varié, avec 13,31 % en 2010 et 14,05 % en 2013. De 2010 à 2013, on notait une variation mensuelle moyenne en octobre de 26,6% neuro paludisme et 23,3% de paludisme anémique vers le mois de juillet de la même année. Une variation spatiale des formes anémiques du paludisme entre les aires de santé (p < 0,001) a été observée de 2010 à 2013. De 2012 à 2013, il a été observé une baisse globale de la fréquence des hospitalisations, de l'incidence et du taux de décès pour le paludisme grave. En analyse multivariée, dans le modèle final, la létalité palustre était associée à la durée de l'hospitalisation de plus de trois jours (OR = 0,124) ; à l'année d'hospitalisation de 2010 à 2012 (OR = 0,813) ; à l'absence de transfusion sanguine du patient (OR = 0,282) ; à l'âge du patient chez les moins d'un an (OR = 0,356) et au traitement d'urgence anti paludique institué avec l'artemether (OR = 3,006) en ajustant pour la forme du paludisme. En revanche la létalité palustre n'était pas liée à la forme du paludisme (p = 0,072), au sexe (p = 0,390), à la résidence (p = 0,308), au traitement antérieur avant l'hospitalisation (p = 0,949), à la fièvre chez l'enfant (p = 0,153) en ajustant sur les autres variables dans le modèle. CONCLUSION: La létalité palustre hospitalière reste élevée avec une baisse des incidences de la morbidité et de la mortalité ; une variation mensuelle de la morbidité et de la mortalité avec deux pics, juillet - août et octobre-novembre et le traitement d'urgence institué avec l'artemether, la durée d'hospitalisation ont pu être identifiés comme des facteurs associés.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...