Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Commun Chem ; 7(1): 185, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174757

RESUMEN

Because of their unique proton-conductivity, chains of phosphoric acid molecules are excellent proton-transfer catalysts. Here we demonstrate that this property could have been exploited for the prebiotic synthesis of the first oligopeptide sequences on our planet. Our results suggest that drying highly diluted solutions containing amino acids (like glycine, histidine and arginine) and phosphates in comparable concentrations at elevated temperatures (ca. 80 °C) in an acidic environment could lead to the accumulation of amino acid:phosphoric acid crystalline salts. Subsequent heating of these materials at 100 °C for 1-3 days results in the formation of oligoglycines consisting of up to 24 monomeric units, while arginine and histidine form shorter oligomers (up to trimers) only. Overall, our results suggest that combining the catalytic effect of phosphate chains with the crystalline order present in amino acid:phosphoric acid salts represents a viable solution that could be utilized to generate the first oligopeptide sequences in a mild acidic hydrothermal field scenario. Further, we propose that crystallization could help overcoming cyclic oligomer formation that is a generally known bottleneck of prebiotic polymerization processes preventing further chain growth.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39020128

RESUMEN

PURPOSE: In pertrochanteric femur fractures the risk for fracture healing complications increases with the complexity of the fracture. In addition to dynamization along the lag screw, successful fracture healing may also be facilitated by further dynamization along the shaft axis. The aim of this study was to investigate the mechanical stability of additional axial notch dynamization compared to the standard treatment in an unstable pertrochanteric femur fracture treated with cephalomedullary nailing. METHODS: In 14 human cadaver femora, an unstable pertrochanteric fracture was stabilized with a cephalomedullary nail. Additional axial notch dynamization was enabled in half of the samples and compared against the standard treatment (n = 7). Interfragmentary motion, axial construct stiffness and load to failure were investigated in a stepwise increasing cyclic load protocol. RESULTS: Mean load to failure (1414 ± 234 N vs. 1428 ± 149 N, p = 0.89) and mean cycles to failure (197,129 ± 45,087 vs. 191,708 ± 30,490, p = 0.81) were equivalent for axial notch dynamization and standard treatment, respectively. Initial construct stiffness was comparable for both groups (axial notch dynamization 684 [593-775] N/mm, standard treatment 618 [497-740] N/mm, p = 0.44). In six out of seven specimens the additional axial dynamization facilitated interfragmentary compression, while maintaining its mechanical stability. After initial settling of the constructs, there were no statistically significant differences between the groups for either subsidence or rotation of the femoral head fragment (p ≤ 0.30). CONCLUSION: Axial notch dynamization provided equivalent mechanical stability compared to standard treatment in an unstable pertrochanteric fracture. Whether the interfragmentary compression generated by axial notch dynamization will promote fracture healing through improved fracture reduction needs to be evaluated clinically.

3.
Chemistry ; 30(48): e202402055, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38884181

RESUMEN

Enzymes play a fundamental role in cellular metabolism. A wide range of enzymes require the presence of complementary coenzymes and cofactors to function properly. While coenzymes are believed to have been part of the last universal ancestor (LUCA) or have been present even earlier, the syntheses of crucial coenzymes like the redox-active coenzymes flavin adenine dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD+) remain challenging. Here, we present a pathway to NAD+ under prebiotic conditions starting with ammonia, cyanoacetaldehyde, prop-2-ynal and sugar-forming precursors, yielding in situ the nicotinamide riboside. Regioselective phosphorylation and water stable light activated adenosine monophosphate derivatives allow for topographically and irradiation-controlled formation of NAD+. Our findings indicate that NAD+, a coenzyme vital to life, can be formed non-enzymatically from simple organic feedstock molecules via photocatalytic activation under prebiotically plausible early Earth conditions in a continuous process under aqueous conditions.


Asunto(s)
NAD , NAD/química , NAD/metabolismo , Amoníaco/química , Niacinamida/química , Niacinamida/análogos & derivados , Fosforilación , Prebióticos , Adenosina Monofosfato/química , Catálisis , Acetaldehído/química , Oxidación-Reducción , Agua/química , Compuestos de Piridinio/química , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo
4.
Plants (Basel) ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732448

RESUMEN

Vitis vinifera L. subsp. sylvestris (sylvestris) is the only native wild grapevine in Eurasia (Europe and western Asia) and is the existing ancestor of the grapevine varieties (for wine and table grape production) belonging to the subsp. sativa. In Slovenia, the prevailing opinion has been that there are no Slovenian sylvestris habitats. This study describes sylvestris in Slovenia for the first time and aims to present an overview of the locations of the wild grapevine in the country. In this project, a sample set of 89 accessions were examined using 24 SSR and 2 SSR markers plus APT3 markers to determine flower sex. The accessions were found in forests on the left bank of the Sava River in Slovenia, on the border between alluvial soils and limestone and dolomite soils, five different sites, some of which are described for the first time. The proportion of female to male accessions differed between sites. At two sites, female plants dominated; at others, the ratio was balanced. The plants' genetic diversity and structure were compared with autochthonous and unique varieties of subsp. sativa from old vineyards in Slovenia and with rootstocks escaped from nature from abandoned vineyards. Sylvestris was clearly distinguishable from vinifera and the rootstocks. Based on genetic analyses, it was confirmed that Slovenian sylvestris is closest to the Balkan and German sylvestris groups. Meanwhile, a safety duplication of the wild grapevine accessions has been established at the University Centre of Viticulture and Enology Meranovo, Faculty of Agriculture and Life Sciences at the University of Maribor.

5.
Chemistry ; 30(37): e202400623, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38656599

RESUMEN

The emergent properties resulting from selective supramolecular interactions are of significant importance for materials and chemical systems. For the directed use of such properties, a fundamental understanding of the interaction mechanism and the resulting mode of function is necessary for a tailored design. The self-induced diastereomeric anisochronism effect (SIDA), which occurs in the intermolecular interaction of chiral molecules, generates unique properties such as chiral self-recognition and nonlinear effects. Here we show that anisidine amino acid diamides lead to extraordinary signal splitting in NMR spectra through supramolecular interaction and homochiral self-recognition. By systematic experiments we have investigated the underlying SIDA effect, explored its limits and finally successfully utilized it in the determination of enantiomeric ratios by NMR spectroscopy of chiral 'SIDA-inactive' compounds such as thalidomide.

7.
Chemistry ; 30(2): e202302764, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37850416

RESUMEN

Imidazolidine-4-thiones (ITOs) are cyclic, secondary amines that were considered as potential prebiotic organocatalysts for light-driven α-alkylations of aldehydes by bromoacetonitrile (BAN). Recent studies showed that the initially supplied ITOs represent the pre-catalyst because they undergo S-alkylation with BAN to give 4-(alkylthio)-3-imidazolines (TIMs). Given that the same reagent mix that undergoes light-driven α-alkylations is also effective in the dark, we synthesized ten ITO- or TIM-derived enamines of aldehydes and characterized their nucleophilic reactivities by kinetic studies in acetonitrile. The experimental second-order rate constants k2 for reactions of enamines with benzhydrylium ions (reference electrophiles) were evaluated by the Mayr-Patz equation, lg k2 (20 °C)=sN (N+E). The determined nucleophilicities N (and sN ) reveal the reactivity profiles of these enamines under prebiotically relevant conditions as well as their potential for use in organocatalytic synthesis.

9.
Chirality ; 36(1): e23603, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37410057
10.
Front Plant Sci ; 14: 1276764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143573

RESUMEN

The present study is the first in-depth research evaluating the genetic diversity and potential resistance of Armenian wild grapes utilizing DNA-based markers to understand the genetic signature of this unexplored germplasm. In the proposed research, five geographical regions with known viticultural history were explored. A total of 148 unique wild genotypes were collected and included in the study with 48 wild individuals previously collected as seed. A total of 24 nSSR markers were utilized to establish a fingerprint database to infer information on the population genetic diversity and structure. Three nSSR markers linked to the Ren1 locus were analyzed to identify potential resistance against powdery mildew. According to molecular fingerprinting data, the Armenian V. sylvestris gene pool conserves a high genetic diversity, displaying 292 different alleles with 12.167 allele per loci. The clustering analyses and diversity parameters supported eight genetic groups with 5.6% admixed proportion. The study of genetic polymorphism at the Ren1 locus revealed that 28 wild genotypes carried three R-alleles and 34 wild genotypes carried two R-alleles associated with PM resistance among analyzed 107 wild individuals. This gene pool richness represents an immense reservoir of under-explored genetic diversity and breeding potential. Therefore, continued survey and research efforts are crucial for the conservation, sustainable management, and utilization of Armenian wild grape resources in the face of emerging challenges in viticulture.

11.
Acc Chem Res ; 56(20): 2801-2813, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37752618

RESUMEN

ConspectusLife as we know it is built on complex and perfectly interlocking processes that have evolved over millions of years through evolutionary optimization processes. The emergence of life from nonliving matter and the evolution of such highly efficient systems therefore constitute an enormous synthetic and systems chemistry challenge. Advances in supramolecular and systems chemistry are opening new perspectives that provide insights into living and self-sustaining reaction networks as precursors for life. However, the ab initio synthesis of such a system requires the possibility of autonomous optimization of catalytic properties and, consequently, of an evolutionary system at the molecular level. In this Account, we present our discovery of the formation of substituted imidazolidine-4-thiones (photoredox) organocatalysts from simple prebiotic building blocks such as aldehydes and ketones under Strecker reaction conditions with ammonia and cyanides in the presence of hydrogen sulfide. The necessary aldehydes are formed from CO2 and hydrogen under prebiotically plausible meteoritic or volcanic iron-particle catalysis in the atmosphere of the early Earth. Remarkably, the investigated imidazolidine-4-thiones undergo spontaneous resolution by conglomerate crystallization, opening a pathway for symmetry breaking, chiral amplification, and enantioselective organocatalysis. These imidazolidine-4-thiones enable α-alkylations of aldehydes and ketones by photoredox organocatalysis. Therefore, these photoredox organocatalysts are able to modify their aldehyde building blocks, which leads in an evolutionary process to mutated second-generation and third-generation catalysts. In our experimental studies, we found that this mutation can occur not only by new formation of the imidazolidine core structure of the catalyst from modified aldehyde building blocks or by continuous supply from a pool of available building blocks but also by a dynamic exchange of the carbonyl moiety in ring position 2 of the imidazolidine moiety. Remarkably, it can be shown that by incorporating aldehyde building blocks from their environment, the imidazolidine-4-thiones are able to change and adapt to altering environmental conditions without undergoing the entire formation process. The selection of the mutated catalysts is then based on the different catalytic activities in the modification of the aldehyde building blocks and on the catalysis of subsequent processes that can lead to the formation of molecular reaction networks as progenitors for cellular processes. We were able to show that these imidazolidine-4-thiones not only enable α-alkylations but also facilitate other important transformations, such as the selective phosphorylation of nucleosides to nucleotides as a key step leading to the oligomerization to RNA and DNA. It can therefore be expected that evolutionary processes have already taken place on a small molecular level and have thus developed chemical tools that change over time, representing a hidden layer on the path to enzymatically catalyzed biochemical processes.

12.
Chemistry ; 29(67): e202302841, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665654

RESUMEN

The Negishi cross-coupling reactions involves the application of organozinc reagents and is a highly versatile reaction in synthetic organic chemistry. The transmetallation step plays a pivotal role in the mechanism of these types of cross-coupling reactions. In this study, mechanistic investigations are presented indicating that higher-order zincates are the transmetallating active species in Pd- and Ni-catalyzed Negishi cross-coupling reactions. These findings are supported by halide salt addition experiments and by obtaining a single X-ray crystal structure of the solid monoaryl higher-order zincate [1-NaphthylZnX3 ]2- Mg(THF)2 2+ . The procedure developed in this work was further applied to the synthesis of various monoaryl higher-order zincates, after which their synthetic usefulness in terms of high reactivity towards transmetallation in Negishi cross-couplings, as well as stability, was exemplified in several reactions.

13.
Chem Commun (Camb) ; 59(52): 8091-8094, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37293771

RESUMEN

Imidazolidine-4-thiones have been suggested as potential prebiotic organocatalysts for light-driven α-alkylations of aldehydes by bromoacetonitrile. However, imidazolidine-4-thiones react with bromoacetonitrile to give S-cyanomethylated dihydroimidazoles. Kinetic studies show that enamines derived from these cyclic secondary amines and aldehydes are more nucleophilic than enamines derived from aldehydes and MacMillan organocatalysts.

14.
Injury ; 54 Suppl 5: 110818, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37217399

RESUMEN

Depending on the severity of the injury and the involvement of the soft tissue envelope, clavicle fractures can be treated operatively or non-operatively. In the past, displaced fractures of the clavicle shaft in adults have been treated non-operatively. However, the rate of nonunion following non-operative treatment seems to be higher than previously reported. In addition, publications reporting better functional outcomes following operative treatment are increasing. In recent years this has led to a paradigm shift towards an increase of operative fracture treatment. The aim of this review article was to summarize the currently available evidence on the treatment of clavicle fractures. Classifications, indications, and treatment options for different fracture patterns of the medial, midshaft, and lateral clavicles are presented and discussed.


Asunto(s)
Clavícula , Fracturas Óseas , Adulto , Humanos , Clavícula/diagnóstico por imagen , Clavícula/cirugía , Clavícula/lesiones , Fijación Interna de Fracturas , Resultado del Tratamiento , Placas Óseas , Fracturas Óseas/cirugía
15.
Sci Rep ; 13(1): 6843, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231067

RESUMEN

The emergence of prebiotic organics was a mandatory step toward the origin of life. The significance of the exogenous delivery versus the in-situ synthesis from atmospheric gases is still under debate. We experimentally demonstrate that iron-rich meteoritic and volcanic particles activate and catalyse the fixation of CO2, yielding the key precursors of life-building blocks. This catalysis is robust and produces selectively aldehydes, alcohols, and hydrocarbons, independent of the redox state of the environment. It is facilitated by common minerals and tolerates a broad range of the early planetary conditions (150-300 °C, ≲ 10-50 bar, wet or dry climate). We find that up to 6 × 108 kg/year of prebiotic organics could have been synthesized by this planetary-scale process from the atmospheric CO2 on Hadean Earth.

16.
Chirality ; 35(9): 549-561, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36951009

RESUMEN

Soai's asymmetric autocatalysis represents a highly remarkable example for spontaneous symmetry breaking and enantioselective amplification in the enantioselective alkylation of pyrimidine-5-carbaldehydes to the corresponding chiral pyrimidine alcohols. Recently, zinc hemiacetalate complexes, formed from pyrimidine-5-carbaldehydes and the chiral product alcohol, were identified by in situ high-resolution mass spectrometric measurements as highly active transient asymmetric catalysts in this autocatalytic transformation. To study the formation of such hemiacetals and their stereodynamic properties, we focused on the synthesis of coumarin homolog biaryl systems with carbaldehyde and alcohol substituents. Such systems are able to form hemiacetals by intramolecular cyclization. An interesting feature of the substituted biaryl backbone is that tropos and atropos systems can be obtained, enabling or disabling the intramolecular cyclization to hemiacetals. Biaryl structures with various functional groups were synthesized, and the equilibrium and stereodynamics between the closed and open structures were investigated by dynamic enantioselective HPLC (DHPLC). The enantiomerization barriers ΔGǂ and activation parameters ΔHǂ and ΔSǂ were determined from temperature dependent kinetic measurements.

17.
Acc Chem Res ; 55(23): 3345-3361, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351215

RESUMEN

Asymmetric synthesis constitutes a key technology for the preparation of enantiomerically pure compounds as well as for the selective control of individual stereocenters in the synthesis of complex compounds. It is thus of extraordinary importance for the synthesis of chiral drugs, dietary supplements, flavors, and fragrances, as well as novel materials with tunable and reconfigurable chiroptical properties or the assembly of complex natural products. Typically, enantiomerically pure catalysts are used for this purpose. To prepare enantiomerically pure ligands or organocatalysts, one can make use of the natural chiral pool. Ligands and organocatalysts with an atropisomeric biphenyl and binaphthyl system have become popular, as they are configurationally stable and contain a C2-symmetric skeleton, which has been found to be particularly privileged. For catalysts with opposite configurations, both product enantiomers can be obtained. Configurationally flexible biphenyl systems initially appeared to be unsuitable for this purpose, as they racemize after successful enantiomer separation and thus are neither storable nor afford a reproducible enantioselectivity. However, there are strategies that exploit the dynamics of such ligands to stereoconvergently enrich one of the catalyst enantiomers. This can be achieved, for example, by coordinating an enantiomerically pure additive to a ligand-metal complex, which results in deracemization of the configurationally flexible biphenyl system, thereby enriching the thermodynamically preferred diastereomer. In this Account, we present our strategy to design stereochemically flexible catalysts that combine the properties of supramolecular recognition, stereoconvergent alignment, and catalysis. Such systems are capable to recognize the chirality of the target product, leading to an increase in enantioselectivity during asymmetric catalysis. We have systematically developed and investigated these smart catalyst systems and have found ways to specifically design and synthesize them for various applications. In addition to (i) reaction product-induced chiral amplification, we have developed systems with (ii) intermolecular and (iii) intramolecular recognition, and successfully applied them in asymmetric catalysis. Our results pave the way for new applications such as temperature-controlled enantioselectivity, controlled inversion of enantioselectivity with the same chirality of the recognition unit, generation of positive nonlinear effects, and targeted design of autocatalytic systems through dynamic formation of transient catalysts. Understanding such systems is of enormous importance for catalytic processes leading to symmetry breaking and amplification of small imbalances of enantiomers and offer a possible explanation of homochirality of biological systems. In addition, we are learning how to target supramolecular interactions to enhance enantioselectivities in asymmetric catalysis through secondary double stereocontrol. Configurationally flexible catalysts will enable future resource-efficient development of asymmetric syntheses, as enantioselectivities can be fully switched by stereoselective alignment of the stereochemically flexible ligand core on demand.


Asunto(s)
Compuestos de Bifenilo , Ligandos , Catálisis , Estereoisomerismo
18.
Nat Commun ; 13(1): 6488, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310176

RESUMEN

α-Amanitin is a bicyclic octapeptide composed of a macrolactam with a tryptathionine cross-link forming a handle. Previously, the occurrence of isomers of amanitin, termed atropisomers has been postulated. Although the total synthesis of α-amanitin has been accomplished this aspect still remains unsolved. We perform the synthesis of amanitin analogs, accompanied by in-depth spectroscopic, crystallographic and molecular dynamics studies. The data unambiguously confirms the synthesis of two amatoxin-type isomers, for which we propose the term ansamers. The natural structure of the P-ansamer can be ansa-selectively synthesized using an optimized synthetic strategy. We believe that the here described terminology does also have implications for many other peptide structures, e.g. norbornapeptides, lasso peptides, tryptorubins and others, and helps to unambiguously describe conformational isomerism of cyclic peptides.


Asunto(s)
Alfa-Amanitina , Péptidos Cíclicos , Alfa-Amanitina/química , Amanitinas/química , Isomerismo , Péptidos
19.
Bioessays ; 44(10): e2200157, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988147
20.
Orig Life Evol Biosph ; 52(1-3): 75-91, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35984585

RESUMEN

To understand chiral symmetry breaking on the molecular level, we developed a method to efficiently investigate reaction kinetics of single molecules. The model systems include autocatalysis as well as a reaction cascade to gain further insight into the prebiotic origin of homochirality. The simulated reactions start with a substrate and only a single catalyst molecule, and the occurrence of symmetry breaking was examined for its degree of dependence on randomness. The results demonstrate that interlocking processes, which e.g., form catalysts, autocatalytic systems, or reaction cascades that build on each other and lead to a kinetic acceleration, can very well amplify a statistically occurring symmetry breaking. These results suggest a promising direction for the experimental implementation and identification of such processes, which could have led to a shift out of thermodynamic equilibrium in the emergence of life.


Asunto(s)
Modelos Biológicos , Catálisis , Cinética , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA