Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Opt Express ; 30(26): 46602-46625, 2022 Dec 19.
Article En | MEDLINE | ID: mdl-36558610

Multicore optical fibers and ribbons based on fiber arrays allow for massively parallel transmission of signals via spatially separated channels, thereby offering attractive bandwidth scaling with linearly increasing technical effort. However, low-loss coupling of light between fiber arrays or multicore fibers and standard linear arrays of vertical-cavity surface-emitting lasers (VCSEL) or photodiodes (PD) still represents a challenge. In this paper, we demonstrate that 3D-printed facet-attached microlenses (FaML) offer an attractive path for connecting multimode fiber arrays as well as individual cores of multimode multicore fibers to standard arrays of VCSEL or PD. The freeform coupling elements are printed in situ with high precision on the device and fiber facets by high-resolution multi-photon lithography. We demonstrate coupling losses down to 0.35 dB along with lateral 1 dB alignment tolerances in excess of 10 µm, allowing to leverage fast passive assembly techniques that rely on industry-standard machine vision. To the best of our knowledge, our experiments represent the first demonstration of a coupling interface that connects individual cores of a multicore fiber to VCSEL or PD arranged in a standard linear array without the need for additional fiber-based or waveguide-based fan-out structures. Using this approach, we build a 3 × 25 Gbit/s transceiver assembly which fits into a small form-factor pluggable module and which fulfills many performance metrics specified in the IEEE 802.3 standard.

2.
Appl Opt ; 60(19): D108-D121, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-34263844

By combining integral field spectroscopy with extreme adaptive optics, we are now able to resolve objects close to the diffraction limit of large telescopes, exploring new science cases. We introduce an integral field unit designed to couple light with a minimal plate scale from the SCExAO facility at NIR wavelengths to a single-mode spectrograph. The integral field unit has a 3D-printed micro-lens array on top of a custom single-mode multi-core fiber, to optimize the coupling of light into the fiber cores. We demonstrate the potential of the instrument via initial results from the first on-sky runs at the 8.2 m Subaru Telescope with a spectrograph using off-the-shelf optics, allowing for rapid development with low cost.

3.
Opt Express ; 28(25): 37996-38007, 2020 Dec 07.
Article En | MEDLINE | ID: mdl-33379622

Wafer-level probing of photonic integrated circuits is key to reliable process control and efficient performance assessment in advanced production workflows. In recent years, optical probing of surface-coupled devices such as vertical-cavity lasers, top-illuminated photodiodes, or silicon photonic circuits with surface-emitting grating couplers has seen great progress. In contrast to that, wafer-level probing of edge-emitting devices with hard-to-access vertical facets at the sidewalls of deep-etched dicing trenches still represents a major challenge. In this paper, we address this challenge by introducing a novel concept of optical probes based on 3D-printed freeform coupling elements that fit into deep-etched dicing trenches on the wafer surface. Exploiting the design freedom and the precision of two-photon laser lithography, the coupling elements can be adapted to a wide variety of mode-field sizes. We experimentally demonstrate the viability of the approach by coupling light to edge-emitting waveguides on different integration platforms such as silicon photonics (SiP), silicon nitride (TriPleX), and indium phosphide (InP). Achieving losses down to 1.9 dB per coupling interface, we believe that 3D-printed coupling elements represent a key step towards highly reproducible wafer-level testing of edge-coupled photonic integrated circuits.

4.
Small ; 16(2): e1904695, 2020 Jan.
Article En | MEDLINE | ID: mdl-31804019

Scanning-probe microscopy (SPM) is the method of choice for high-resolution imaging of surfaces in science and industry. However, SPM systems are still considered as rather complex and costly scientific instruments, realized by delicate combinations of microscopic cantilevers, nanoscopic tips, and macroscopic read-out units that require high-precision alignment prior to use. This study introduces a concept of ultra-compact SPM engines that combine cantilevers, tips, and a wide variety of actuator and read-out elements into one single monolithic structure. The devices are fabricated by multiphoton laser lithography as it is a particularly flexible and accurate additive nanofabrication technique. The resulting SPM engines are operated by optical actuation and read-out without manual alignment of individual components. The viability of the concept is demonstrated in a series of experiments that range from atomic-force microscopy engines offering atomic step height resolution, their operation in fluids, and to 3D printed scanning near-field optical microscopy. The presented approach is amenable to wafer-scale mass fabrication of SPM arrays and capable to unlock a wide range of novel applications that are inaccessible by current approaches to build SPMs.

...