Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
iScience ; 26(11): 108146, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37867935

Despite the similar clinical outcomes after renin-angiotensin system (RAS) inhibitor (RASi) continuation or withdrawal in COVID-19, the effects on angiotensin-converting enzyme 2 (ACE2) and RAS metabolites remain unclear. In a substudy of the randomized controlled Austrian Corona Virus Adaptive Clinical Trial (ACOVACT), patients with hypertension and COVID-19 were randomized 1:1 to either RASi continuation (n = 30) or switch to a non-RASi medication (n = 29). RAS metabolites were analyzed using a mixed linear regression model (n = 30). Time to a sustained clinical improvement was equal and ACE2 did not differ between the groups but increased over time in both. Overall ACE2 was higher with severe COVID-19. ACE-S and Ang II levels increased as expected with ACE inhibitor discontinuation. These data support the safety of RASi continuation in COVID-19, although RASi were frequently discontinued in our post hoc analysis. The study was not powered to draw definite conclusions on clinical outcomes using small sample sizes.

2.
J Autoimmun ; 140: 103118, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37826919

BACKGROUND: The role of autoreactive T cells on the course of Coronavirus disease-19 (COVID-19) remains elusive. Type II pneumocytes represent the main target cells of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autoimmune responses against antigens highly expressed in type II pneumocytes may influence the severity of COVID-19 disease. OBJECTIVE: The aim of this study was to investigate autoreactive T cell responses against self-antigens highly expressed in type II pneumocytes in the blood of COVID-19 patients with severe and non-severe disease. METHODS: We collected blood samples of COVID-19 patients with varying degrees of disease severity and of pre-pandemic controls. T cell stimulation assays with peptide pools of type II pneumocyte antigens were performed in two independent cohorts to analyze the autoimmune T cell responses in patients with non-severe and severe COVID-19 disease. Target cell lysis assays were performed with lung cancer cell lines to determine the extent of cell killing by type II PAA-specific T cells. RESULTS: We identified autoreactive T cell responses against four recently described self-antigens highly expressed in type II pneumocytes, known as surfactant protein A, surfactant protein B, surfactant protein C and napsin A, in the blood of COVID-19 patients. These antigens were termed type II pneumocyte-associated antigens (type II PAAs). We found that patients with non-severe COVID-19 disease showed a significantly higher frequency of type II PAA-specific autoreactive T cells in the blood when compared to severely ill patients. The presence of high frequencies of type II PAA-specific T cells in the blood of non-severe COVID-19 patients was independent of their age. We also found that napsin A-specific T cells from convalescent COVID-19 patients could kill lung cancer cells, demonstrating the functional and cytotoxic role of these T cells. CONCLUSIONS: Our data suggest that autoreactive type II PAA-specific T cells have a protective role in SARS-CoV-2 infections and the presence of high frequencies of these autoreactive T cells indicates effective viral control in COVID-19 patients. Type II-PAA-specific T cells may therefore promote the killing of infected type II pneumocytes and viral clearance.

3.
Sci Rep ; 12(1): 20117, 2022 11 22.
Article En | MEDLINE | ID: mdl-36418458

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


COVID-19 , Peptide Hormones , Humans , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Angiotensin I , Angiotensin II , SARS-CoV-2 , Renin , Antihypertensive Agents
4.
Front Immunol ; 13: 946318, 2022.
Article En | MEDLINE | ID: mdl-35928813

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Humans , Membrane Glycoproteins , Neutralization Tests , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
5.
Front Immunol ; 13: 888794, 2022.
Article En | MEDLINE | ID: mdl-35711424

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with different resistance levels to existing immunity have recently emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit neutralizing activities are considered the best correlate of protection and an understanding of humoral immunity is crucial for controlling the pandemic. We thus analyzed such antibodies in individuals recovered from infection in 2020 as well as vaccinees after two doses of an mRNA vaccine. Methods: Neutralizing antibody responses against three SARS-CoV-2 variants (D614G, VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24 non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or second vaccination, respectively, as well as six months later. In addition, the effect of the S sequence of the infecting strain on neutralization was studied. Results: Non-hospitalized patients had the lowest neutralization titers against all variants, while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing activity was lower against the two VOCs and declined significantly in all cohorts after six months. This decrease was more pronounced in hospitalized and vaccinated individuals than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA value ratio) was higher in the infected cohorts than in vaccinees and did not differ between non-hospitalized and hospitalized patients. Patients infected with viral strains carrying mutations in the N-terminal domain of the spike protein were impaired in Beta VOC neutralization. Conclusions: Specific neutralizing activities were higher in infected than in vaccinated individuals, and no difference in the quality of these antibodies was observed between hospitalized and non-hospitalized patients, despite significantly lower titers in the latter group. Additionally, antibody responses of infected individuals showed greater heterogeneity than those of vaccinees, which was associated with mutations in the spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-19 vaccination, which is an important issue to consider in ongoing vaccine strategy improvements.


COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , Viral Envelope Proteins , mRNA Vaccines
6.
Wien Klin Wochenschr ; 134(9-10): 385-390, 2022 May.
Article En | MEDLINE | ID: mdl-34882256

BACKGROUND: Critically ill Coronavirus disease 2019 (COVID-19) patients have high rates of bacterial superinfection. Multiplex polymerase chain reaction panels may be able to provide useful information about the incidence and spectrum of bacteria causing superinfections. METHODS: In this retrospective observational study we included all COVID-19 positive patients admitted to our intensive care unit with suspected hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP) in whom the BioFire® Pneumonia Panel (PP) was performed from tracheal aspirate or bronchoalveolar lavage fluid for diagnostic purposes. The aim of our study was to analyze the spectrum of pathogens detected with the PP. RESULTS: In this study 60 patients with a median age of 62.5 years were included. Suspected VAP was the most frequent (48/60, 80%) indication for performing the PP. Tracheal aspirate was the predominant sample type (50/60, 83.3%). The PP led to a negative, monomicrobial and polymicrobial result in 36.7%, 35% and 28.3% of the patients, respectively. The three most detected bacteria were Staphylococcus aureus (13/60, 21.7%), Klebsiella pneumoniae (12/60, 20%) and Haemophilus influenzae (9/60, 15%). Neither atypical bacteria nor resistance genes were detected. Microbiological culture of respiratory specimens was performed in 36 (60%) patients concomitantly. The PP and microbiological culture yielded a non-concordant, partial concordant and completely concordant result in 13.9% (5/36), 30.6% (11/36) and 55.6% (20/36) of the analyzed samples, respectively. CONCLUSION: In critically ill COVID-19 patients with suspected HAP/VAP results of the PP and microbiological culture methods were largely consistent. In our cohort, S. aureus and K. pneumoniae were the most frequently detected organisms. A higher diagnostic yield may be achieved if both methods are combined.


COVID-19 , Pneumonia, Ventilator-Associated , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Critical Illness/epidemiology , Humans , Intensive Care Units , Middle Aged , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Ventilator-Associated/epidemiology , Staphylococcus aureus/genetics
7.
Front Cardiovasc Med ; 8: 779073, 2021.
Article En | MEDLINE | ID: mdl-34859078

Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbß3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbß3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbß3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.

8.
Front Cardiovasc Med ; 8: 795624, 2021.
Article En | MEDLINE | ID: mdl-34957266

Thromboembolic complications are frequently observed in Coronavirus disease 2019 (COVID-19). While COVID-19 is linked to platelet dysregulation, the association between disease outcome and platelet function is less clear. We prospectively monitored platelet activation and reactivity in 97 patients during the first week of hospitalization and determined plasma markers of platelet degranulation and inflammation. Adverse outcome in COVID-19 was associated with increased basal platelet activation and diminished platelet responses, which aggravated over time. Especially GPIIb/IIIa responses were abrogated, pointing toward impeded platelet aggregation. Moreover, platelet-leukocyte aggregate formation was diminished, pointing toward abrogated platelet-mediated immune responses in COVID-19. No general increase in plasma levels of platelet-derived granule components could be detected, arguing against platelet exhaustion. However, studies on platelets from healthy donors showed that plasma components in COVID-19 patients with unfavorable outcome were at least partly responsible for diminished platelet responses. Taken together this study shows that unfavorable outcome in COVID-19 is associated with a hypo-responsive platelet phenotype that aggravates with disease progression and may impact platelet-mediated immunoregulation.

9.
Cardiovasc Res ; 117(14): 2807-2820, 2021 12 17.
Article En | MEDLINE | ID: mdl-34609480

AIMS: Anticoagulation was associated with improved survival of hospitalized coronavirus disease 2019 (COVID-19) patients in large-scale studies. Yet, the development of COVID-19-associated coagulopathy (CAC) and the mechanism responsible for improved survival of anticoagulated patients with COVID-19 remain largely elusive. This investigation aimed to explore the effects of anticoagulation and low-molecular-weight heparin (LMWH) in particular on patient outcome, CAC development, thromboinflammation, cell death, and viral persistence. METHODS AND RESULTS: Data of 586 hospitalized COVID-19 patients from three different regions of Austria were evaluated retrospectively. Of these, 419 (71.5%) patients received LMWH and 62 (10.5%) received non-vitamin-K oral anticoagulants (NOACs) during hospitalization. Plasma was collected at different time points in a subset of 106 patients in order to evaluate markers of thromboinflammation (H3Cit-DNA) and the cell death marker cell-free DNA (cfDNA). Use of LMWH was associated with improved survival upon multivariable Cox regression (hazard ratio = 0.561, 95% confidence interval: 0.348-0.906). Interestingly, neither LMWH nor NOAC was associated with attenuation of D-dimer increase over time, or thromboinflammation. In contrast, anticoagulation was associated with a decrease in cfDNA during hospitalization, and curtailed viral persistence was observed in patients using LMWH leading to a 4-day reduction of virus positivity upon quantitative polymerase chain reaction [13 (interquartile range: 6-24) vs. 9 (interquartile range: 5-16) days, P = 0.009]. CONCLUSION: Time courses of haemostatic and thromboinflammatory biomarkers were similar in patients with and without LMWH, indicating either no effects of LMWH on haemostasis or that LMWH reduced hypercoagulability to levels of patients without LMWH. Nonetheless, anticoagulation with LMWH was associated with reduced mortality, improved markers of cell death, and curtailed viral persistence, indicating potential beneficial effects of LMWH beyond haemostasis, which encourages use of LMWH in COVID-19 patients without contraindications.


Anticoagulants/therapeutic use , COVID-19 Drug Treatment , Heparin, Low-Molecular-Weight/therapeutic use , Thromboinflammation/virology , Aged , Anticoagulants/pharmacology , Austria/epidemiology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/mortality , Female , Hemostasis , Heparin, Low-Molecular-Weight/pharmacology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/drug effects , Thromboinflammation/prevention & control
10.
Wien Klin Wochenschr ; 133(17-18): 902-908, 2021 Sep.
Article En | MEDLINE | ID: mdl-34129096

BACKGROUND: In addition to respiratory symptoms, many patients with coronavirus disease 2019 (COVID-19) present with neurological complications. Several case reports and small case series described myoclonus in five patients suffering from the disease. The purpose of this article is to report on five critically ill patients with COVID-19-associated myoclonus. MATERIAL AND METHODS: The clinical courses and test results of patients treated in the study center ICU and those of partner hospitals are described. Imaging, laboratory tests and electrophysiological test results are reviewed and discussed. RESULTS: In severe cases of COVID-19 myoclonus can manifest about 3 weeks after initial onset of symptoms. Sedation is sometimes effective for symptom control but impedes respiratory weaning. No viral particles or structural lesions explaining this phenomenon were found in this cohort. CONCLUSION: Myoclonus in patients with severe COVID-19 may be due to an inflammatory process, hypoxia or GABAergic impairment. Most patients received treatment with antiepileptic or anti-inflammatory agents and improved clinically.


COVID-19 , Myoclonus , Critical Illness , Humans , Intensive Care Units , Myoclonus/chemically induced , Myoclonus/diagnosis , Myoclonus/drug therapy , SARS-CoV-2
11.
Front Cell Infect Microbiol ; 11: 795026, 2021.
Article En | MEDLINE | ID: mdl-35141170

Objective: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. Methods: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. Results: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). Conclusions: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. Clinical Trial Registration: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.


COVID-19 , SARS-CoV-2 , Hospital Mortality , Hospitalization , Humans , Retrospective Studies
12.
Front Cardiovasc Med ; 8: 802566, 2021.
Article En | MEDLINE | ID: mdl-35141292

Coronavirus disease 2019 (COVID-19) induces a hypercoagulatory state that frequently leads to thromboembolic complications. Whereas anticoagulation is associated with reduced mortality, the role of antiplatelet therapy in COVID-19 is less clear. We retrospectively analyzed the effect of anticoagulation and antiplatelet therapy in 578 hospitalized patients with COVID-19 and prospectively monitored 110 patients for circulating microthrombi and plasma markers of coagulation in the first week of admission. Moreover, we determined platelet shape change and also thrombi in postmortem lung biopsies in a subset of patients with COVID-19. We observed no association of antiplatelet therapy with COVID-19 survival. Adverse outcome in COVID-19 was associated with increased activation of the coagulation cascade, whereas circulating microthrombi did not increase in aggravated disease. This was in line with analysis of postmortem lung biopsies of patients with COVID-19, which revealed generally fibrin(ogen)-rich and platelet-low thrombi. Platelet spreading was normal in severe COVID-19 cases; however, plasma from patients with COVID-19 mediated an outcome-dependent inhibitory effect on naïve platelets. Antiplatelet medication disproportionally exacerbated this platelet impairment in plasma of patients with fatal outcome. Taken together, this study shows that unfavorable outcome in COVID-19 is associated with a profound dysregulation of the coagulation system, whereas the contribution of platelets to thrombotic complications is less clear. Adverse outcome may be associated with impaired platelet function or platelet exhaustion. In line, antiplatelet therapy was not associated with beneficial outcome.

13.
Front Med (Lausanne) ; 7: 592629, 2020.
Article En | MEDLINE | ID: mdl-33262993

Disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from mild illness to severe respiratory disease and death. In this study, we determined the kinetics of viral loads, antibody responses (IgM, IgG, neutralization) and SARS-CoV-2-specific CD4 T cells by quantifying these parameters in 435 serial respiratory and blood samples collected from a cohort of 29 COVID-19 patients with either moderate or severe disease during the whole period of hospitalization or until death. Remarkably, there was no significant difference in the kinetics and plateau levels of neutralizing antibodies among the groups with different disease severity. In contrast, the dynamics of specific CD4 T cell responses differed considerably, but all patients with moderate or severe disease developed robust SARS-CoV-2-specific responses. Of note, none of the patients had detectable cross-reactive CD4 T cells in the first week after symptom onset, which have been described in 20-50% of unexposed individuals. Our data thus provide novel insights into the kinetics of antibody and CD4 T cell responses as well as viral loads that are key to understanding the role of adaptive immunity in combating the virus during acute infection and provide leads for the timing of immune therapies for COVID-19.

14.
Trans R Soc Trop Med Hyg ; 113(3): 123-130, 2019 03 01.
Article En | MEDLINE | ID: mdl-30476287

BACKGROUND: Geophagy, the consumption of soil, is well documented in Africa and other continents, but is rarely investigated in Asia and even less so in India. The main aim of this exploratory qualitative study was therefore to understand the motivation for clay consumption, the social perception of the habit, the mode and quantity of consumption, as well as subjectively perceived effects of clay consumption in Himachal Pradesh, North India. METHODS: We conducted semi-structured interviews with 27 female geophagists aged 18-80 years. RESULTS: We could show that geophagy exists across all ages and social groups. The main type of consumed soil is yellow clay used for house wall plastering. Geophagy is usually practised because of a craving for soil despite various fears of negative health effects. It is normally done secretly and under-reported to local doctors. The most common self-reported positive effect of geophagy was the feeling of relief. Geophagy was generally considered as harmful to health and various complaints were associated with it. It is not practised because of food shortages or as a remedy. On the contrary, it is generally seen as an addiction detrimental to health. CONCLUSIONS: Awareness of geophagy has to be ameliorated in the Indian population and specifically among health workers to improve support for affected individuals. Geophagy should be routinely included in national antenatal care guidelines.


Pica/psychology , Adolescent , Adult , Aged , Aged, 80 and over , Clay , Educational Status , Female , Health Knowledge, Attitudes, Practice , Humans , India , Interviews as Topic , Middle Aged , Motivation , Pica/etiology , Soil , Young Adult
...