Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Congenit Anom (Kyoto) ; 64(3): 155-160, 2024 May.
Article En | MEDLINE | ID: mdl-38520260

Angelman syndrome (AS, MIM #105830) is a neurodevelopmental disorder characterized by severe intellectual disability, profound developmental delay, movement or balance problems, an excessively cheerful disposition, and seizures. AS results from inadequate expression of the maternal UBE3A gene (MIM #601623), which encodes an E3 ligase in the ubiquitin-proteasome pathway. Here we present the case of two sisters with features consistent with AS who had negative methylation analyses. An autism/intellectual disability expanded panel revealed a maternally inherited novel UBE3A (NM_001354506.2) variant c.2443C>T p.(Pro815Ser) in both patients that was initially classified as a variant of uncertain significance. The patients were enrolled in Indiana University's Undiagnosed Rare Disease Clinic (URDC) to further investigate the variant. Additional data, including deep phenotyping, familial segregation analysis, and in silico studies, suggest that the variant is likely pathogenic. 3D modeling studies based on the available crystal structure revealed that the Pro815Ser variant can introduce more flexibility into the protein and alter its enzymatic activity. Recent literature confirms the pathogenic nature of the variant. Reanalysis of the UBE3A variant has heightened existing knowledge of AS and has offered this family an end to their diagnostic odyssey.


Angelman Syndrome , Siblings , Ubiquitin-Protein Ligases , Humans , Angelman Syndrome/genetics , Angelman Syndrome/diagnosis , Female , Ubiquitin-Protein Ligases/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Phenotype , Pedigree , Mutation , Child , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Genetic Predisposition to Disease , Child, Preschool
2.
Clin Genet ; 105(4): 455-456, 2024 04.
Article En | MEDLINE | ID: mdl-38346866

A 5-year-old affected male had following phenotypes: autism, motor stereotypy, developmental regression, staring gaze, absent speech, and behavioral abnormality. The biochemical testing was normal and genetic testing identified a de novo pathogenic variant in ITSN1 gene in the proband. To our knowledge, this is the second report that elucidates the role of ITSN1 gene in an autosomal dominant neurodevelopmental disorder.


Autistic Disorder , Humans , Male , Child, Preschool , Family , Genetic Testing , Phenotype
3.
Am J Med Genet A ; 194(5): e63499, 2024 May.
Article En | MEDLINE | ID: mdl-38135440

MBTPS1 (NM_003791.4) encodes Site-1 protease, a serine protease that functions sequentially with Site-2 protease regulating cholesterol homeostasis and endoplasmic reticulum stress response. MBTPS1 pathogenic variants are associated with spondyloepiphyseal dysplasia, Kondo-Fu type (MIM:618392; cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome, and Silver-Russell-like syndrome). In this report, we describe a 14-year-old female with a complex medical history including white matter volume loss, early-onset cataracts, retrognathia, laryngomalacia, inguinal hernia, joint hypermobility, feeding dysfunction, and speech delay. Additionally, features of ectodermal dysplasia that she has include decreased sweating, heat intolerance, dysplastic nails, chronically dry skin, and abnormal hair growth issues. Exome sequencing analysis identified compound heterozygous variants in the MBTPS1 gene: c.2255G > T p.(Gly752Val) predicted to affect important function of the protein, which was inherited from the mother, and a splice site variant c.2831 + 5G > T, which was inherited from the father. The RNA-seq analysis of the splice variant showed skipping of exon 21, predicted to result in frameshifting p.(Ser901fs28*) leading to non-sense mediated decay. To our knowledge, only eight studies have been published that described the MBPTS1-related disorders. Interestingly, we observed the features of ectodermal dysplasia in our patient that further expands the phenotypic spectrum of MBTPS1 gene-related disorders.


Ectodermal Dysplasia , Genetic Testing , Adolescent , Female , Humans , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Genotype , Mutation , Phenotype , Syndrome
4.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Article En | MEDLINE | ID: mdl-37552066

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Child , Zebrafish/genetics , Zebrafish/metabolism , Caenorhabditis elegans/metabolism , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Megalencephaly/genetics , Developmental Disabilities/genetics , Mutation, Missense/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
5.
Article En | MEDLINE | ID: mdl-36442996

Biallelic pathogenic variants in DYNC2H1 are the cause of short-rib thoracic dysplasia type III with or without polydactyly (OMIM #613091), a skeletal ciliopathy characterized by thoracic hypoplasia due to short ribs. In this report, we review the case of a patient who was admitted to the Neonatal Intensive Care Unit (NICU) of Indiana University Health (IUH) for respiratory support after experiencing respiratory distress secondary to a small, narrow chest causing restrictive lung disease. Additional phenotypic features include postaxial polydactyly, short proximal long bones, and ambiguous genitalia were noted. Exome sequencing (ES) revealed a maternally inherited likely pathogenic variant c.10322C > T p.(Leu3448Pro) in the DYNC2H1 gene. However, there was no variant found on the paternal allele. Microarray analysis to detect deletion or duplication in DYNC2H1 was normal. Therefore, there was insufficient evidence to establish a molecular diagnosis. To further explore the data and perform additional investigations, the patient was subsequently enrolled in the Undiagnosed Rare Disease Clinic (URDC) at Indiana University School of Medicine (IUSM). The investigators at the URDC performed a reanalysis of the ES raw data, which revealed a paternally inherited DYNC2H1 deep-intronic variant c.10606-14A > G predicted to create a strong cryptic acceptor splice site. Additionally, the RNA sequencing of fibroblasts demonstrated partial intron retention predicted to cause a premature stop codon and nonsense-mediated mRNA decay (NMD). Droplet digital RT-PCR (RT-ddPCR) showed a drastic reduction by 74% of DYNCH2H1 mRNA levels. As a result, the intronic variant was subsequently reclassified as likely pathogenic resulting in a definitive clinical and genetic diagnosis for this patient. Reanalysis of ES and fibroblast mRNA experiments confirmed the pathogenicity of the splicing variants to supplement critical information not revealed in original ES or CMA reports. The NICU and URDC collaboration ended the diagnostic odyssey for this family; furthermore, its importance is emphasized by the possibility of prenatally diagnosing the mother's current pregnancy.


Polydactyly , Short Rib-Polydactyly Syndrome , Female , Humans , Infant, Newborn , Pregnancy , Cytoplasmic Dyneins/genetics , Exome Sequencing , Mutation , Ribs , RNA, Messenger , Short Rib-Polydactyly Syndrome/diagnosis , Short Rib-Polydactyly Syndrome/genetics
6.
Article En | MEDLINE | ID: mdl-35091507

IGF1R-related disorders are associated with intrauterine growth restriction (IUGR), postnatal growth failure, short stature, microcephaly, developmental delay, and dysmorphic facial features. We report a patient who presented to medical genetics at 7 mo of age with a history of IUGR, poor feeding, mild developmental delays, microcephaly, and dysmorphic facial features. Whole-exome sequencing revealed a novel c.1464T > G p.(Cys488Trp) variant in the IGF1R gene, initially classified as a variation of uncertain significance (VUS). We enrolled the patient in the URDC (Undiagnosed Rare Disease Clinic) and performed additional studies including deep phenotyping and familial segregation analysis, which demonstrated that the patient's IGF1R VUS was present in phenotypically similar family members. Furthermore, biochemical testing revealed an elevated serum IGF-1 level consistent with abnormal IGF-1 receptor function. Workup resulted in the patient's variant being upgraded from a VUS to likely pathogenic. Our report expands the variant and phenotypic spectrum of IGF1R-related disorders and illustrates benefits and feasibility of reassessing a VUS beyond the initial molecular diagnosis by deep phenotyping, 3D modeling, additional biochemical testing, and familial segregation studies through the URDC, a multidisciplinary clinical program whose major goal is to end the diagnostic odyssey in patients with rare diseases.


Microcephaly , Rare Diseases , Abnormalities, Multiple , Feasibility Studies , Female , Fetal Growth Retardation/genetics , Growth Disorders/genetics , Heterozygote , Humans , Microcephaly/genetics , Pregnancy , Receptor, IGF Type 1/genetics
7.
J Community Genet ; 12(4): 663-670, 2021 Oct.
Article En | MEDLINE | ID: mdl-34558037

Improvements in technology used for genetic testing have yielded an increased numbers of variants that are identified, each with a potential to return uninformative results. While some genetics providers may expect patients to be responsible for staying abreast of updates to their genetic testing results, it is unknown whether patients are even aware of the possibility of variant reclassification. Little research has assessed the comprehension and attitudes of parents of pediatric patients regarding reclassification of variants of uncertain significance (VUS). Semi-structured telephone interviews were conducted with parents (n = 15) whose children received a VUS from genetic testing in either the pediatric neurogenetics or developmental pediatrics clinics at Riley Hospital for Children in Indianapolis, Indiana. Most participants expressed understanding of the uncertainty surrounding their child's VUS test result. However, nearly half of participants shared that they had no prior knowledge of its potential reclassification. When asked whose responsibility it is to keep informed about changes to their child's VUS status, some participants stated that it belonged solely to healthcare providers - a distinctive finding of our study - whereas others felt that it was a joint responsibility between providers and the parents. We additionally found that some patients desire a support group for individuals with VUS. These results provide insight into the importance of pretest genetic counseling and the need for increased social and informational support for parents of children who receive inconclusive genetic testing results. We conclude that relying solely on the patient or guardian to manage uncertain results may be insufficient.

8.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Article En | MEDLINE | ID: mdl-33232675

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Chromosomal Proteins, Non-Histone/genetics , Developmental Disabilities/genetics , Mutation, Missense , Phenotype , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Child , Child, Preschool , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Genes, Dominant , Genetic Variation , Haploinsufficiency , Humans , Infant , Male , Microscopy, Confocal , Neuroglia/metabolism , Neurons/metabolism , Protein Binding , Zebrafish , Zebrafish Proteins/genetics
9.
Am J Med Genet A ; 182(11): 2501-2507, 2020 11.
Article En | MEDLINE | ID: mdl-32869452

EVEN-PLUS syndrome is a rare condition characterized by its involvement of the Epiphyses, Vertebrae, Ears, and Nose, PLUS other associated findings. We report here the fifth case of EVEN-PLUS syndrome with novel variants c.818 T > G (p.L273X) and c.955C > T (p.L319F) in the HSPA9 gene identified through whole-exome sequencing. The patient is the first male known to be affected and presented with additional features not previously described with EVEN-PLUS syndrome. These features include agenesis of the septum pellucidum, a short chest and sternum, 13 pairs of ribs, a single hemivertebra, laterally displaced nipples, hydronephrosis, unilateral cryptorchidism, unilateral single palmar crease, bilateral clubfoot, and hypotonia. qPCR analysis provides supporting evidence for a nonsense-mediated decay mechanism for the HSPA9 truncating variant. In silico 3D modeling supports the pathogenicity of the c.955C > T (p.L319F) missense variant. The study presented here further describes the syndrome and broadens its mutational and phenotypic spectrum. Our study also lends support to HSPA9 variants as the underlying etiology of EVEN-PLUS syndrome and ultimately provides a better understanding of the molecular basis of the condition.


HSP70 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Musculoskeletal Abnormalities/genetics , Mutation, Missense , Septum Pellucidum/pathology , Clubfoot/complications , Cryptorchidism/complications , Exome , Genetic Association Studies , Genetic Variation , Humans , Hydronephrosis/complications , Imaging, Three-Dimensional , Infant , Karyotyping , Male , Muscle Hypotonia/complications , Mutation , Phenotype , RNA, Messenger/metabolism , Ribs/abnormalities , Septum Pellucidum/abnormalities , Sternum/abnormalities , Syndrome , Exome Sequencing
10.
Am J Med Genet A ; 179(10): 2075-2082, 2019 10.
Article En | MEDLINE | ID: mdl-31361404

Zinc finger protein 462 (ZNF462) is a relatively newly discovered vertebrate specific protein with known critical roles in embryonic development in animal models. Two case reports and a case series study have described the phenotype of 10 individuals with ZNF462 loss of function variants. Herein, we present 14 new individuals with loss of function variants to the previous studies to delineate the syndrome of loss of function in ZNF462. Collectively, these 24 individuals present with recurring phenotypes that define a multiple congenital anomaly syndrome. Most have some form of developmental delay (79%) and a minority has autism spectrum disorder (33%). Characteristic facial features include ptosis (83%), down slanting palpebral fissures (58%), exaggerated Cupid's bow/wide philtrum (54%), and arched eyebrows (50%). Metopic ridging or craniosynostosis was found in a third of study participants and feeding problems in half. Other phenotype characteristics include dysgenesis of the corpus callosum in 25% of individuals, hypotonia in half, and structural heart defects in 21%. Using facial analysis technology, a computer algorithm applying deep learning was able to accurately differentiate individuals with ZNF462 loss of function variants from individuals with Noonan syndrome and healthy controls. In summary, we describe a multiple congenital anomaly syndrome associated with haploinsufficiency of ZNF462 that has distinct clinical characteristics and facial features.


DNA-Binding Proteins/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Facies , Female , Humans , Infant , Male , Phenotype , Syndrome
...