Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Toxins (Basel) ; 12(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322547

RESUMEN

Mono-ADP-ribosyltransferase (mART) toxins are secreted by several pathogenic bacteria that disrupt vital host cell processes in deadly diseases like cholera and whooping cough. In the last two decades, the discovery of mART toxins has helped uncover the mechanisms of disease employed by pathogens impacting agriculture, aquaculture, and human health. Due to the current abundance of mARTs in bacterial genomes, and an unprecedented availability of genomic sequence data, mART toxins are amenable to discovery using an in silico strategy involving a series of sequence pattern filters and structural predictions. In this work, a bioinformatics approach was used to discover six bacterial mART sequences, one of which was a functional mART toxin encoded by the plant pathogen, Erwinia amylovora, called Vorin. Using a yeast growth-deficiency assay, we show that wild-type Vorin inhibited yeast cell growth, while catalytic variants reversed the growth-defective phenotype. Quantitative mass spectrometry analysis revealed that Vorin may cause eukaryotic host cell death by suppressing the initiation of autophagic processes. The genomic neighbourhood of Vorin indicated that it is a Type-VI-secreted effector, and co-expression experiments showed that Vorin is neutralized by binding of a cognate immunity protein, VorinI. We demonstrate that Vorin may also act as an antibacterial effector, since bacterial expression of Vorin was not achieved in the absence of VorinI. Vorin is the newest member of the mART family; further characterization of the Vorin/VorinI complex may help refine inhibitor design for mART toxins from other deadly pathogens.


Asunto(s)
ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , Biología Computacional/métodos , Simulación por Computador , Minería de Datos/métodos , Erwinia amylovora/genética , ADP Ribosa Transferasas/aislamiento & purificación , ADP Ribosa Transferasas/toxicidad , Secuencia de Aminoácidos , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/toxicidad , Enfermedades de las Plantas/genética , Espectrometría de Masas en Tándem/métodos
3.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31844879

RESUMEN

C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Paenibacillus larvae/enzimología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Citoesqueleto de Actina/enzimología , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Interacciones Huésped-Patógeno , Cinética , Macrófagos/enzimología , Mutación , Paenibacillus larvae/genética , Paenibacillus larvae/patogenicidad , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Especificidad por Sustrato , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Proteína de Unión al GTP rhoA/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA