Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 919623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35989916

RESUMEN

Background: Repetitive neuromuscular magnetic stimulation (rNMS) of the trapezius muscles showed beneficial effects in preventing episodic migraine. However, clinical characteristics that predict a favorable response to rNMS are unknown. The objective of this analysis is to identify such predictors. Methods: Thirty participants with a diagnosis of episodic migraine (mean age: 24.8 ± 4.0 years, 29 females), who were prospectively enrolled in two non-sham-controlled studies evaluating the effects of rNMS were analyzed. In these studies, the interventional stimulation of the bilateral trapezius muscles was applied in six sessions and distributed over two consecutive weeks. Baseline and follow-up assessments included the continuous documentation of a headache calendar over 30 days before and after the stimulation period, the Migraine Disability Assessment Score (MIDAS) questionnaire (before stimulation and 90 days after stimulation), and measurements of pain pressure thresholds (PPTs) above the trapezius muscles by algometry (before and after each stimulation session). Participants were classified as responders based on a ≥25% reduction in the variable of interest (headache frequency, headache intensity, days with analgesic intake, MIDAS score, left-sided PPTs, right-sided PPTs). Post-hoc univariate and multivariate binary logistic regression analyses were performed. Results: Lower headache frequency (P = 0.016) and intensity at baseline (P = 0.015) and a migraine diagnosis without a concurrent tension-type headache component (P = 0.011) were significantly related to a ≥25% reduction in headache frequency. Higher headache frequency (P = 0.052) and intensity at baseline (P = 0.014) were significantly associated with a ≥25% reduction in monthly days with analgesic intake. Lower right-sided PPTs at baseline were significantly related to a ≥25% increase in right-sided PPTs (P = 0.015) and left-sided PPTs (P =0.030). Performance of rNMS with higher stimulation intensities was significantly associated with a ≥25% reduction in headache intensity (P = 0.046). Conclusions: Clinical headache characteristics at baseline, the level of muscular hyperalgesia, and stimulation intensity may inform about how well an individual patient responds to rNMS. These factors may allow an early identification of patients that would most likely benefit from rNMS.

2.
Sci Rep ; 10(1): 5954, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249788

RESUMEN

Migraine is a burdensome disease with an especially high prevalence in women between the age of 15 and 49 years. Non-pharmacological, non-invasive therapeutic methods to control symptoms are increasingly in demand to complement a multimodal intervention approach in migraine. Thirty-seven subjects (age: 25.0 ± 4.1 years; 36 females) diagnosed with high-frequency episodic migraine who presented at least one active myofascial trigger point (mTrP) in the trapezius muscles and at least one latent mTrP in the deltoid muscles bilaterally prospectively underwent six sessions of repetitive peripheral magnetic stimulation (rPMS) over two weeks. Patients were randomly assigned to receive rPMS applied to the mTrPs of the trapezius (n = 19) or deltoid muscles (n = 18). Whereas the trapezius muscle is supposed to be part of the trigemino-cervical complex (TCC) and, thus, involved in the pathophysiology of migraine, the deltoid muscle was not expected to interfere with the TCC and was therefore chosen as a control stimulation site. The headache calendar of the German Migraine and Headache Society (DMKG) as well as the Migraine Disability Assessment (MIDAS) questionnaire were used to evaluate stimulation-related effects. Frequency of headache days decreased significantly in both the trapezius and the deltoid group after six sessions of rPMS (trapezius group: p = 0.005; deltoid group: p = 0.003). The MIDAS score decreased significantly from 29 to 13 points (p = 0.0004) in the trapezius and from 31 to 15 points (p = 0.002) in the deltoid group. Thus, rPMS applied to mTrPs of neck and shoulder muscles offers a promising approach to alleviate headache frequency and symptom burden. Future clinical trials are needed to examine more profoundly these effects, preferably using a sham-controlled setting.


Asunto(s)
Magnetoterapia/métodos , Trastornos Migrañosos/terapia , Músculos del Cuello/fisiopatología , Puntos Disparadores/fisiopatología , Adulto , Femenino , Humanos , Masculino , Trastornos Migrañosos/fisiopatología , Dimensión del Dolor , Hombro/fisiopatología , Encuestas y Cuestionarios , Resultado del Tratamiento , Adulto Joven
3.
Front Neurol ; 10: 738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379706

RESUMEN

Purpose: Repetitive peripheral magnetic stimulation (rPMS) has been successfully applied recently in migraineurs to alleviate migraine symptoms. Symptom relief has been achieved by stimulating myofascial trigger points (mTrPs) of the trapezius muscles, which are considered part of the trigemino-cervical complex (TCC). However, effects on musculature have not been assessed in detail, and the specificity of effects to muscles considered part of the TCC yet has to be elucidated. Against this background, this study presents the setup of rPMS in migraine and evaluates effects on skeletal musculature. Materials and Methods: Thirty-seven adults (mean age: 25.0 ± 4.1 years, 36 females) suffering from migraine and presenting mTrPs according to physical examination underwent rPMS either to mTrPs in the trapezius muscles (considered part of the TCC; n = 19) or deltoid muscles (considered not part of the TCC; n = 18) during six sessions over the course of 2 weeks. Standardized questionnaires were filled in to assess any adverse events and experience with rPMS as well as satisfaction and benefits from stimulation. Algometry was performed to evaluate changes in pressure pain thresholds (PPTs). Results: All stimulation sessions were successfully performed without adverse events, with 84.2% of subjects of the trapezius group and 94.4% of subjects of the deltoid group describing rPMS as comfortable (p = 0.736). Muscular pain or tension improved in 73.7% of subjects of the trapezius group and in 61.1% of subjects of the deltoid group (p = 0.077). PPTs of the trapezius muscles clearly increased from the first to the last stimulation sessions-regardless of the stimulated muscle (rPMS to the trapezius or deltoid muscles). However, depending on the examined muscles the increase of PPTs differed significantly (subjects with stimulation of trapezius muscles: p = 0.021; subjects with stimulation of deltoid muscles: p = 0.080). Conclusion: rPMS is a comfortable method in migraineurs that can improve local muscular pain or tension. Furthermore, it is able to increase directly and indirectly the PPTs of the trapezius muscles (considered part of the TCC) when applied over mTrPs, supporting the role of the TCC in migraineurs.

4.
J Headache Pain ; 20(1): 8, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658563

RESUMEN

BACKGROUND: Research in migraine points towards central-peripheral complexity with a widespread pattern of structures involved. Migraine-associated neck and shoulder muscle pain has clinically been conceptualized as myofascial trigger points (mTrPs). However, concepts remain controversial, and the identification of mTrPs is mostly restricted to manual palpation in clinical routine. This study investigates a more objective, quantitative assessment of mTrPs by means of magnetic resonance imaging (MRI) with T2 mapping. METHODS: Ten subjects (nine females, 25.6 ± 5.2 years) with a diagnosis of migraine according to ICHD-3 underwent bilateral manual palpation of the upper trapezius muscles to localize mTrPs. Capsules were attached to the skin adjacent to the palpated mTrPs for marking. MRI of the neck and shoulder region was performed at 3 T, including a T2-prepared, three-dimensional (3D) turbo spin echo (TSE) sequence. The T2-prepared 3D TSE sequence was used to generate T2 maps, followed by manual placement of regions of interest (ROIs) covering the trapezius muscles of both sides and signal alterations attributable to mTrPs. RESULTS: The trapezius muscles showed an average T2 value of 27.7 ± 1.4 ms for the right and an average T2 value of 28.7 ± 1.0 ms for the left side (p = 0.1055). Concerning signal alterations in T2 maps attributed to mTrPs, nine values were obtained for the right (32.3 ± 2.5 ms) and left side (33.0 ± 1.5 ms), respectively (p = 0.0781). When comparing the T2 values of the trapezius muscles to the T2 values extracted from the signal alterations attributed to the mTrPs of the ipsilateral side, we observed a statistically significant difference (p = 0.0039). T2 hyperintensities according to visual image inspection were only reported in four subjects for the right and in two subjects for the left side. CONCLUSIONS: Our approach enables the identification of mTrPs and their quantification in terms of T2 mapping even in the absence of qualitative signal alterations. Thus, it (1) might potentially challenge the current gold-standard method of physical examination of mTrPs, (2) could allow for more targeted and objectively verifiable interventions, and (3) could add valuable models to understand better central-peripheral mechanisms in migraine.


Asunto(s)
Trastornos Migrañosos/diagnóstico por imagen , Músculos Superficiales de la Espalda/diagnóstico por imagen , Puntos Disparadores/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Palpación , Adulto Joven
5.
Eur J Paediatr Neurol ; 20(6): 888-897, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27528122

RESUMEN

BACKGROUND: Repetitive peripheral magnetic stimulation (rPMS) has been applied to musculoskeletal pain conditions. Since recent data show that migraine and tension-type headache (TTH) might be closely related to peripheral muscular pain in the neck and shoulder region (supporting the concept of the trigemino-cervical complex (TCC)), this pilot study explores the acceptance of rPMS to the upper trapezius muscles in migraine (partly in combination with TTH). METHODS: We used rPMS to stimulate active myofascial trigger points (aTrPs) of the upper trapezius muscles in 20 young adults suffering from migraine. Acceptance was assessed by a standardized questionnaire, whereas self-rated effectiveness was evaluated by headache calendars and the Migraine Disability Assessment (MIDAS). Algometry was performed to explore the local effect of rPMS on the muscles. RESULTS: Acceptance of rPMS was shown in all subjects without any adverse events, and rPMS had a statistically significant impact on almost every parameter of the headache calendar and MIDAS. Among others, the number of migraine attacks (p < 0.001) and migraine intensity (p = 0.001) significantly decreased regarding pre- and post-stimulation assessments. Accordingly, 100.0% of subjects would repeat the stimulation, while 90.0% would recommend rPMS as a treatment option for migraine. CONCLUSIONS: rPMS might represent a promising tool to alleviate migraine symptoms within the context of myofascial pain. This might be due to stimulation-dependent modulation of the peripheral sensory effect within the TCC in migraine. However, sham-controlled studies with larger and more homogeneous cohorts are needed to prove a potential beneficial effect. Ethics Committee Registration Numbers: 356-14 and 447/14.


Asunto(s)
Magnetoterapia/métodos , Trastornos Migrañosos/terapia , Músculos Superficiales de la Espalda , Adulto , Evaluación de la Discapacidad , Femenino , Humanos , Masculino , Síndromes del Dolor Miofascial/complicaciones , Dimensión del Dolor , Aceptación de la Atención de Salud , Proyectos Piloto , Encuestas y Cuestionarios , Resultado del Tratamiento , Puntos Disparadores , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA