Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 222: 116049, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342347

RESUMEN

We previously showed that digitoxin inhibits angiogenesis and cancer cell proliferation and migration and these effects were associated to protein tyrosine kinase 2 (FAK) inhibition. Considering the interactions between FAK and Rho GTPases regulating cell cytoskeleton and movement, we investigated the involvement of RhoA and Rac1 in the antiangiogenic effect of digitoxin. Phalloidin staining of human umbilical vein endothelial cells (HUVECs) showed the formation of stress fibers in cells treated with 10 nM digitoxin. By Rhotekin- and Pak1- pull down assays, detecting the GTP-bound form of GTPases, we observed that digitoxin (10-25 nM) induced sustained (0.5-6 h) RhoA activation with no effect on Rac1. Furthermore, inhibition of HUVEC migration and capillary-like tube formation by digitoxin was counteracted by hindering RhoA-ROCK axis with RhoA silencing or Y-27632 treatment. Digitoxin did not decrease p190RhoGAP phosphorylation at Tyr1105 (a site targeted by FAK), suggesting that RhoA activation was independent from FAK inhibition. Because increasing evidence points to a redox regulation of RhoA, we measured intracellular ROS and found that digitoxin treatment enhanced ROS levels in a concentration-dependent manner (1-25 nM). Notably, the flavoprotein inhibitor DPI or the pan-NADPH oxidase (NOX) inhibitor VAS-2870 antagonized both ROS increase and RhoA activation by digitoxin. Our results provide evidence that inhibition of HUVEC migration and tube formation by digitoxin is dependent on ROS production by endothelial NOX, which leads to the activation of RhoA/ROCK pathway. Digitoxin effects on proteins regulating cytoskeletal organization and cell motility could have a wider impact on cancer progression, beyond the antiangiogenic activity.


Asunto(s)
Digitoxina , NADPH Oxidasas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Digitoxina/farmacología , Células Endoteliales de la Vena Umbilical Humana , Quinasa 1 de Adhesión Focal/metabolismo , Fosforilación , Movimiento Celular , NADPH Oxidasas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Quinasas Asociadas a rho/metabolismo
2.
Life Sci ; 333: 122135, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778413

RESUMEN

AIMS: Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS: PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS: The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17ß-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE: By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Estrógenos/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estradiol/farmacología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Carcinoma Epitelial de Ovario , Tamoxifeno/farmacología , MicroARNs/genética , MicroARNs/farmacología , Movimiento Celular
3.
Biomed Pharmacother ; 162: 114670, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068331

RESUMEN

Programmed cell death 1 ligand 1 (PD-L1) expressed in non-immune cells is involved in immune-mediated tissue damage in the context of inflammatory conditions and tumor immune escape. Emerging evidence suggests soluble (s)PD-L1 as a marker of inflammation. Based on well-established sex-specific differences in immunity, we tested the novel hypotheses that (i) endothelial cell PD-L1 is modulated by inflammatory cytokines and vascular endothelial growth factor (VEGF) in a sex-specific fashion, and (ii) the endothelium is a source of sPD-L1. After exposure of human umbilical vein endothelial cells (HUVECs) to lipopolysaccharide, interleukin (IL)1ß or VEGF for 24 h, total PD-L1 levels were upregulated solely in cells from female donors, while being unchanged in those from male donors. Accordingly, exposure to synovial fluids from patients with inflammatory arthritis upregulated PD-L1 levels in HUVECs from female donors only. Membrane PD-L1 expression as measured by flow cytometry was unchanged in response to inflammatory stimuli. However, exposure to 2 ng/mL IL-1ß or 50 ng/mL VEGF time-dependently increased sPD-L1 release by HUVECs from female donors. Treatment with the metalloproteinase (MMP) inhibitor GM6001 (10 µM) prevented IL-1ß-induced sPD-L1 release and enhanced membrane PD-L1 levels. The anti-VEGF agents bevacizumab and sunitinib reduced both VEGF-induced PD-L1 accumulation and sPD-L1 secretion. Thus, inflammatory agents and VEGF rapidly increased endothelial PD-L1 levels in a sex-specific fashion. Furthermore, the vascular endothelium may be a sPD-L1 source, whose production is MMP-dependent and modulated by anti-VEGF agents. These findings may have implications for sex-specific immunity, vascular inflammation and response to anti-angiogenic therapy.


Asunto(s)
Antígeno B7-H1 , Citocinas , Humanos , Masculino , Femenino , Citocinas/metabolismo , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio , Inflamación
4.
Eur J Pharmacol ; 945: 175591, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804546

RESUMEN

Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.


Asunto(s)
Etinilestradiol , Receptores de Estrógenos , Femenino , Humanos , Receptores de Estrógenos/metabolismo , Etinilestradiol/farmacología , Estrógenos/farmacología , Anticonceptivos Orales Combinados , Células Endoteliales de la Vena Umbilical Humana , Receptores Acoplados a Proteínas G/metabolismo
5.
Biomed Pharmacother ; 152: 113181, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35653890

RESUMEN

Several mediators including cytokines, growth factors and metalloproteinases (MMP) modulate pathological angiogenesis associated with inflammatory arthritis. The biological factors underlying sex disparities in the incidence and severity of rheumatic musculoskeletal diseases are only partially understood. We hypothesized that synovial fluids (SFs) from rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients would impact on endothelial biology in a sexually dimorphic fashion. Immune cell counts and levels of pro-angiogenic cytokines found in SFs from RA and PsA patients (n = 17) were higher than in osteoarthritis patients (n = 6). Synovial VEGF concentration was significantly higher in male than in female RA patients. Zymography revealed that SFs comprised solely MMP-9 and MMP-2, with significantly higher MMP-9 levels in male than female RA patients. Using in vitro approaches that mimic the major steps of the angiogenic process, SFs from RA and PsA patients induced endothelial migration and formation of capillary-like structures compared to control. Notably, endothelial cells from female donors displayed enhanced angiogenic response to SFs with respect to males. Treatment with the established anti-angiogenic agent digitoxin prevented activation of focal adhesion kinase and SF-induced in vitro angiogenesis. Thus, despite higher synovial VEGF and MMP-9 levels in male patients, the responsiveness of vascular endothelium to SF priming was higher in females, suggesting that gender differences in angiogenic responses were mainly related to the endothelial genotype. These findings may have implications for pathogenesis and targeted therapies of inflammatory arthritis.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/metabolismo , Artritis Psoriásica/patología , Artritis Reumatoide/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Neovascularización Patológica/metabolismo , Factores Sexuales , Líquido Sinovial/metabolismo , Membrana Sinovial/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
FASEB J ; 36(3): e22140, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35107852

RESUMEN

Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Quinasa 1 de Adhesión Focal/genética , MicroARNs/genética , Neoplasias Ováricas/genética , Fosfofructoquinasa-2/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Línea Celular , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/genética , Glucólisis/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Ováricas/patología
7.
Cardiovasc Res ; 118(4): 988-1003, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33739385

RESUMEN

Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration, and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signalling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signalling pathway inhibition include an increase in arterial pressure, left ventricular dysfunction facilitating the development of heart failure, thromboembolic events including pulmonary embolism and stroke, and myocardial infarction. Sex steroids, such as androgens, progestins, and oestrogens and their receptors (ERα, ERß, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor therapy, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target- and cell-type selectivity likely will open the way to personalized medicine in men and women requiring anti-angiogenic therapy to reduce adverse effects and to improve therapeutic efficacy.


Asunto(s)
Inhibidores de la Angiogénesis , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/efectos adversos , Anticuerpos Monoclonales/efectos adversos , Femenino , Humanos , Masculino , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Caracteres Sexuales , Resultado del Tratamiento , Factores de Crecimiento Endotelial Vascular/uso terapéutico
8.
FASEB J ; 34(9): 12768-12784, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757462

RESUMEN

Few studies have explored the mechanisms coupling estrogen signals to metabolic demand in endothelial cells. We recently showed that 17ß-estradiol (E2) triggers angiogenesis via the membrane G-protein coupled estrogen receptor (GPER) and the key glycolytic protein PFKFB3 as a downstream effector. We herein investigated whether estrogenic agents regulate the stability and/or degradation of glycolytic proteins in human umbilical vein endothelial cells (HUVECs). Similarly to E2, the GPER selective agonist G1 rapidly increased PFKFB3 protein amounts, without affecting mRNA levels. In the presence of cycloheximide, E2 and G1 treatment counteracted PFKFB3 degradation over time, whereas E2-induced PFKFB3 stabilization was abolished by the GPER antagonist G15. Inhibitors of selective SCF E3 ubiquitin ligase (SMER-3) and proteasome (MG132) rapidly increased PFKFB3 protein levels. Accordingly, ubiquitin-bound PFKFB3 was lower in E2- or G1-treated HUVECs. Both agents increased deubiquitinase USP19 levels through GPER signaling. Notably, USP 19 siRNA decreased PFKFB3 levels and abolished E2- and G1-mediated HUVEC tubularization. Finally, E2 and G1 treatments rapidly enhanced glucose transporter GLUT1 levels via GPER independent of transcriptional activation. These findings provide new evidence on mechanisms coupling estrogen signals with the glycolytic program in endothelium and unravel the role of USP19 as a target of the pro-angiogenic effect of estrogenic agents.


Asunto(s)
Endopeptidasas/metabolismo , Estradiol/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Fosfofructoquinasa-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos
9.
Front Pharmacol ; 11: 587221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390959

RESUMEN

Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17ß-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.

10.
Biochem Pharmacol ; 154: 414-423, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890142

RESUMEN

Clinical and experimental evidence supports a role for cardiac glycosides (CGs) as potential novel anticancer drugs. However, there are no studies reporting the effect of CGs on the inflammatory tumor microenvironment (TME), which plays a central role in tumor progression and invasiveness. We investigated whether digitoxin affects a) specific pathways involved in motility and/or activation of different cell types shaping TME, and b) cancer cell growth and invasiveness in response to TME-associated factors. To test our hypothesis, conditioned media (CM) from polarized macrophages, and apoptotic or non-apoptotic ovarian cancer cells (SKOV3) were tested as chemoattractants for endothelial cells, monocytes and cancer cells. We demonstrated that CM from M1 (LPS/IFNγ) and M2 (IL-4/IL-13) polarized macrophages, which mimic inflammatory TME, increased both HUVEC migration and tubularization. Treatment of HUVECs with digitoxin at concentrations within its plasma therapeutic range counteracted these effects. Digitoxin affected the expression of neither M1 (CD80/CD68) nor M2 (CD206/CD163) activation markers, nor the amount of cell-bound IL-1ß and CCL22. Accordingly, HUVEC migration in response to CM from digitoxin-treated activated macrophages was unchanged. These data point to a direct effect of digitoxin on HUVEC signaling rather than on the modulation of the cytokine profile released from activated macrophages. At variance with what observed for HUVECs, digitoxin did not prevent monocyte migration induced by SKOV3 CM. In addition, digitoxin significantly impaired SKOV3 growth and migration in response to M1 or M2 macrophage CM. Finally, we showed that digitoxin inhibited FAK phosphorylation in SKOV3 but not PYK2 phosphorylation in monocytes, thus providing a molecular mechanism accounting for the observed differential anti-migratory effect. Overall, digitoxin counteracted salient features of the inflammatory ovarian cancer microenvironment, laying the ground for potential digitoxin repositioning as an anticancer drug.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Digitoxina/farmacología , Neoplasias Ováricas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/fisiología , Células Cultivadas , Digitoxina/uso terapéutico , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Microambiente Tumoral/fisiología
11.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543707

RESUMEN

Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERß, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17ß-estradiol can influence the cardiovascular and immune systems.


Asunto(s)
Estrógenos/metabolismo , Inmunidad , Neovascularización Fisiológica , Animales , Femenino , Humanos , Macrófagos/inmunología , Redes y Vías Metabólicas , Receptores de Estrógenos/metabolismo
12.
Front Pharmacol ; 9: 71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520230

RESUMEN

Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 µg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

13.
Br J Pharmacol ; 174(18): 3094-3106, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28688145

RESUMEN

BACKGROUND AND PURPOSE: Cardiac glycosides are Na+ /K+ -ATPases inhibitors used to treat congestive heart failure and cardiac arrhythmias. Epidemiological studies indicate that patients on digitalis therapy are more protected from cancer. Evidence of a selective cytotoxicity against cancer cells has suggested their potential use as anticancer drugs. The effect on angiogenesis of clinically used cardiac glycosides has not been extensively explored. EXPERIMENTAL APPROACH: We studied the effect of digoxin, digitoxin and ouabain on early events of the angiogenic process in HUVECs. We determined HUVEC viability, proliferation, migration and differentiation into capillary tube-like structures. We also tested drug activity using an in vivo angiogenesis model. Activation of protein tyrosine kinase 2 (FAK) and signalling proteins associated with the Na+ /K+ -ATPase signalosome was determined by Western blotting. KEY RESULTS: Digitoxin and ouabain (1-100 nM) inhibited HUVEC migration, concentration-dependently, without affecting cell viability, while digoxin induced apoptosis at the same concentrations. Digitoxin antagonized growth factor-induced migration and tubularization at concentrations (1-25 nM) within its plasma therapeutic range. The anti-angiogenic effect of digitoxin was confirmed also by in vivo studies. Digitoxin induced Src, Akt and ERK1/2 phosphorylation but did not affect FAK autophosphorylation at Tyr397 . However, it significantly inhibited growth factor-induced FAK phosphorylation at Tyr576/577 . CONCLUSIONS AND IMPLICATIONS: Therapeutic concentrations of digitoxin inhibited angiogenesis and FAK activation by several pro-angiogenic stimuli. These novel findings suggest a potential repositioning of digitoxin as a broad-spectrum anti-angiogenic drug for diseases where pathological angiogenesis is involved.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Digitoxina/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de la Angiogénesis/química , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Digitoxina/química , Relación Dosis-Respuesta a Droga , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Neovascularización Patológica/metabolismo , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
14.
J Pharmacol Exp Ther ; 361(3): 398-407, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28348059

RESUMEN

The endogenous estrogen 17ß-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10-10 to 10-7 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time- and concentration-dependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues.


Asunto(s)
Estradiol/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Fosfofructoquinasa-2/biosíntesis , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Neovascularización Fisiológica/fisiología , Fosfofructoquinasa-2/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
15.
Eur J Nutr ; 56(2): 509-519, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26582578

RESUMEN

OBJECTIVE: The aim of this study was to determine whether α-linolenic acid (ALA ω-3 fatty acid) enriched diet affects growth parameters when applied to a syngeneic model of mammary carcinoma. MATERIALS AND METHODS: BALB/c mice were divided and fed with: 1) a chia oil diet, rich in ALA or 2) a corn oil diet, rich in linoleic acid (LA ω-6 fatty acid). Mice were subcutaneously inoculated with a tumor cell line LM3, derived from a murine mammary adenocarcinoma. RESULTS: After 35 days, tumor incidence, weight, volume and metastasis number were lower in the ALA-fed mice, while tumor latency time was higher, and the release of pro-tumor metabolites derived from ω-6 fatty acids decreased in the tumor. Compared to the control group, a lower number of mitosis, a higher number of apoptotic bodies and higher T-lymphocyte infiltration were consistently observed in the ALA group. An ALA-rich diet decreased the estrogen receptor (ER) α expression, a recognized breast cancer promotor while showing an opposite effect on ERß in tumor lysates. CONCLUSION: These data support the anticancer effect of an ALA-enriched diet, which might be used as a dietary strategy in breast cancer prevention.


Asunto(s)
Dieta , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/prevención & control , Metástasis de la Neoplasia/prevención & control , Ácido alfa-Linolénico/administración & dosificación , Animales , Apoptosis , Línea Celular Tumoral , Aceite de Maíz , Receptor alfa de Estrógeno/análisis , Receptor beta de Estrógeno/análisis , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/análisis , Ácidos Grasos Omega-6/metabolismo , Femenino , Ácido Linoleico , Masculino , Neoplasias Mamarias Experimentales/química , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Aceites de Plantas , Linfocitos T
17.
Prostaglandins Other Lipid Mediat ; 121(Pt B): 190-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26391839

RESUMEN

Specific reactive oxygen species (ROS) from different sources, might lead to different and even opposite, cellular effects. We studied the production of specific ROS resulting from the exposure of human umbilical veins endothelial cells (HUVEC) to H2O2 derived from the natural antioxidant epigallocathechin gallate (EGCG) or from the exposure to IL-1ß using a fluorogenic probe and flow cytometry, and evaluated by western blot analysis and immunocytochemistry the associated expression of transcription factors sensitive to both inflammatory and oxidative stress, such as NF-κB and Nrf2, and some downstream activated genes such as cyclooxygenase-2 (COX-2) and hemeoxygenase 1 (HO-1). The results obtained showed that exogenously-generated H2O2 induce anti-inflammatory and antioxidant effects in HUVECs counteracting the pro-inflammatory and pro-oxidant effect of IL-1ß related to the production of superoxide anions. The underlying mechanisms resulting from the extracellular production of H2O2, include (1) Nrf2 nuclear translocation and the enhanced expression of antioxidant enzymes such as HO-1, and (2) the previously unreported inhibition of NF-κB and COX-2 expression. Overall, these findings provide evidence that the production of specific reactive oxygen species finely tunes endothelial cell function and might be relevant for the reappraisal of the effects of exogenous antioxidants in the context of cardiovascular diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Antioxidantes/metabolismo , Endotelio Vascular/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Estrés Oxidativo , Especies Reactivas de Oxígeno/agonistas , Transporte Activo de Núcleo Celular , Antiinflamatorios no Esteroideos/efectos adversos , Antioxidantes/efectos adversos , Catequina/efectos adversos , Catequina/análogos & derivados , Catequina/metabolismo , Células Cultivadas , Ciclooxigenasa 2/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Suplementos Dietéticos/efectos adversos , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/química , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/metabolismo , Interleucina-1beta/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Subunidad p52 de NF-kappa B/agonistas , Subunidad p52 de NF-kappa B/antagonistas & inhibidores , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Especies Reactivas de Oxígeno/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
18.
Br J Pharmacol ; 172(18): 4575-4587, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26140661

RESUMEN

BACKGROUND AND PURPOSE: Hyperglycaemic memory describes the progression of diabetic complications during subsequent periods of improved glycaemia. We addressed the hypothesis that transient hyperglycaemia causes aberrant COX-2 expression in HUVEC in response to IL-1ß through the induction of long-lasting epigenetic changes involving microRNA-16 (miR-16), a post-transcriptional modulator of COX-2 expression. EXPERIMENTAL APPROACH: Studies were performed on HUVEC collected from women with gestational diabetes mellitus (GDM) (dHUVEC) and normal women (nHUVEC). KEY RESULTS: In dHUVEC treated with IL-1ß, the expression of COX-2 mRNA and protein was enhanced and generation of prostanoids increased (the most abundant was the promitogenic PGF2α ). COX-2 mRNA was more stable in dHUVEC and this was associated with miR-16 down-regulation and c-Myc induction (a suppressor of miR expression). dHUVEC showed increased proliferation in response to IL-1ß, which was prevented by a COX-2 inhibitor and PGF2α receptor antagonist. Comparable changes in COX-2 mRNA, miR-16 and c-Myc detected in dHUVEC were produced in nHUVEC exposed to transient high glucose and then stimulated with IL-1ß under physiological glucose levels; superoxide anion production was enhanced under these experimental conditions. CONCLUSIONS AND IMPLICATIONS: Our results describe a possible mechanism operating in GDM that links the enhanced superoxide anion production and epigenetic changes, associated with hyperglycaemic memory, to endothelial dysfunction through dysregulated post-transcriptional control of COX-2 gene expression in response to inflammatory stimuli. The association of conventional therapy for glycaemic control with agents affecting inflammatory responses and oxidative stress might lead to a more effective prevention of the complications associated with GDM.

19.
Prostaglandins Other Lipid Mediat ; 120: 103-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25819880

RESUMEN

Enhanced biosynthesis of several cytokines, such as, transforming growth factor-ß1 (TGF-ß1), is detected in gestational diabetes mellitus (GDM). In this study, we addressed the question of whether the exposure to the abnormal milieu of GDM in vivo affects gene expression pattern of human umbilical vein endothelial cells (HUVEC) in response to TGF-ß1. We found that HUVEC isolated from GDM (dHUVEC) had reduced migratory capacity versus those of healthy women (nHUVEC) and this quiescent phenotype was associated with higher expression levels of the TGF-ßtype I receptor ALK5 and a slight increase in the endogenous production of TGF-ß1 (mainly in its latent form). Moreover, we performed transcriptome analysis, using microarray technology, of dHUVEC versus nHUVEC, after 3h treatment with exogenous TGF-ß1 (10 ng/ml). The treatment of dHUVEC with TGF-ß1 caused downregulation of the transcription of multiple genes involved in development, cell movement and migration of cells versus TGF-ß1-treated nHUVEC. These changes in transcriptome profile might contribute to GDM-dependent alterations in cardiac morphogenesis and placental development.


Asunto(s)
Diabetes Gestacional/genética , Diabetes Gestacional/patología , Feto/patología , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Factor de Crecimiento Transformador beta1/metabolismo , Estudios de Casos y Controles , Movimiento Celular/efectos de los fármacos , Diabetes Gestacional/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Fenotipo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/farmacología
20.
Biochem Pharmacol ; 89(2): 197-209, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24630927

RESUMEN

Cardiac glycosides are Na/K-ATPase inhibitors, clinically used for congestive heart failure and cardiac arrhythmias. Epidemiological studies have reported that patients on cardiac glycosides treatment are protected from some types of cancers. This evidence together with the demonstration that cardiac glycosides show selective cytotoxicity against cancer cells has raised new interest on the anticancer properties of these drugs. This study examines the mechanism involved in the anticancer effect of ouabain in non-small cell lung cancer cells lines (A549 and H1975). Ouabain inhibited cell proliferation and induced cell death in a concentration-dependent manner. Cell death was caspase-independent and showed classical patterns of autophagic cell death: conversion of LC3-I to LC3-II, increase of LC3 puncta and increase of autophagic flux. Moreover, cell death was completely blocked by the class III phosphatidylinositol-3 kinase inhibitor 3-methyladenine. Here we show that ouabain caused the reduction of Bcl-2 protein levels, with no change in the expression of the autophagic protein Beclin 1. Early signalling events of ouabain exposure were ERK1/2 and JNK activation, however only JNK inhibition with SP600125 or JNK knockdown by shRNA were able to prevent Bcl-2 decrease, conversion of LC3-I to LC3-II and cell death. We propose that JNK activation by ouabain leads to a decrease of Bcl-2 levels, resulting in disruption of the inhibitory interaction of Bcl-2 with Beclin 1, that promotes autophagy. These findings indicate that pharmacological modulation of autophagy by cardiac glycosides could be exploited for anticancer therapy.


Asunto(s)
Autofagia/fisiología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Glicósidos Cardíacos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ouabaína/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA