Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(39): 5866-5869, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37089062

RESUMEN

We report on the synthesis and spectroscopic evidence for a sequence of structural transformations of a new defect-cubane type copper complex, [Cu4(pyalk)4(OAc)4](ClO4)(HNEt3), which acts as a pre-catalyst for water oxidation. In situ and post-catalytic studies showed that the tetrameric complex undergoes a structural transformation into dimeric and monomeric species, induced by water molecules and carbonate anions, respectively. Further, the observed electrocatalytic water oxidation activity has been confirmed to arise from in situ-generated Cu(II) oxidic nanostructures at the electrode interface.

2.
Chem Rev ; 123(9): 6257-6358, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36944098

RESUMEN

The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.

3.
ACS Appl Mater Interfaces ; 15(1): 806-817, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542810

RESUMEN

Identifying thermodynamically favorable and stable non-stoichiometric metal oxides is of crucial importance for solar thermochemical (STC) fuel production via two-step redox cycles. The performance of a non-stoichiometric metal oxide depends on its thermodynamic properties, oxygen exchange capacity, and its phase stability under high-temperature redox cycling conditions. Perovskite oxides (ABO3-δ) are being considered as attractive alternatives to the state-of-the-art ceria (CeO2-δ) due to their high thermodynamic and structural tunability. However, perovskite oxides often exhibit low entropy change compared to ceria, as they generally have one only redox active site, leading to lower mass-specific fuel yields. Herein, we investigate cation-deficient Ce-substituted perovskite oxides as a new class of potential redox materials combining the advantages of perovskites and ceria. We newly synthesized the (CexSr1-x)0.95Ti0.5Mn0.5O3-δ (x = 0, 0.10, 0.15, and 0.20; CSTM) series, with dual-redox active sites comprising Ce (at the A-site) and Mn (at the B-site). By introducing a cation deficiency (∼5%), CSTM perovskite oxides with both phase purity (x ≤ 0.15) and high-temperature structural stability under STC redox cycling conditions are obtained. Thermodynamic properties are evaluated by measuring oxygen non-stoichiometry in the temperature range T = 700-1400 °C and the oxygen partial pressure range pO2 = 1-10-4 bar. The results demonstrate that CSTM perovskite oxides exhibit a composition-dependent simultaneous increase of enthalpy and entropy change with increasing Ce-substitution. (Ce0.20Sr0.80)0.95Ti0.5Mn0.5O3-δ (CSTM20) showed a combination of large entropy change of ∼141 J (mol-O)-1 K-1 and moderate enthalpy change of ∼238 kJ (mol-O)-1, thereby creating favorable conditions for thermochemical H2O splitting. Furthermore, the oxidation states and local coordination environment around Mn, Ce, and Ti sites in the pristine and reduced CSTM samples were extensively studied using X-ray absorption spectroscopy. The results confirmed that both Ce (at the A-site) and Mn (at the B-site) centers undergo simultaneous reduction during thermochemical redox cycling.

4.
ACS Nano ; 16(9): 15318-15327, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36069492

RESUMEN

In-depth insights into the structure-activity relationships and complex reaction mechanisms of oxygen evolution reaction (OER) electrocatalysts are indispensable to efficiently generate clean hydrogen through water electrolysis. We introduce a convenient and effective sulfur heteroatom tuning strategy to optimize the performance of active Ni and Fe centers embedded into coordination polymer (CP) catalysts. Operando monitoring then provided the mechanistic understanding as to how exactly our facile sulfur engineering of Ni/Fe-CPs optimizes the local electronic structure of their active centers to facilitate dioxygen formation. The high OER activity of our optimized S-R-NiFe-CPs outperforms the most recent NiFe-based OER electrocatalysts. Specifically, we start from oxygen-deprived Od-R-NiFe-CPs and transform them into highly active Ni/Fe-CPs with tailored sulfur coordination environments and anionic deficiencies. Our operando X-ray absorption spectroscopy analyses reveal that sulfur introduction into our designed S-R-NiFe-CPs facilitates the formation of crucial highly oxidized Ni4+ and Fe4+ species, which generate oxygen-bridged NiIV-O-FeIV moieties that act as the true OER active intermediates. The advantage of our sulfur-doping strategy for enhanced OER is evident from comparison with sulfur-free Od-R-NiFe-CPs, where the formation of essential high-valent OER intermediates is hindered. Moreover, we propose a dual-site mechanism pathway, which is backed up with a combination of pH-dependent performance data and DFT calculations. Computational results support the benefits of sulfur modulation, where a lower energy barrier enables O-O bond formation atop the S-NiIV-O-FeIV-O moieties. Our convenient anionic tuning strategy facilitates the formation of active oxygen-bridged metal motifs and can thus promote the design of flexible and low-cost OER electrocatalysts.

5.
Energy Environ Sci ; 15(2): 727-739, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35308298

RESUMEN

The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured "all-surface" Fe-doped cobalt phosphide nanoboxes (Co@CoFe-P NBs) as alternative electrocatalysts for industrial-scale applications. Operando Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our operando analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P-Co-O-Fe-P configurations with low-valence metal centers (M0/M+) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these in situ reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P-Co-O-Fe-P configurations into oxygen-bridged, high-valence CoIV-O-FeIV moieties as true active intermediates. In sharp contrast, the formation of such CoIII/IV-O-FeIII/IV moieties in Co-FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. Ex situ studies of the as-synthesized reference cobalt sulfides (Co-S), Fe doped cobalt selenides (Co@CoFe-Se), and Fe doped cobalt tellurides (Co@CoFe-Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage.

6.
Nat Commun ; 12(1): 5589, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552084

RESUMEN

Single-atom catalysts with maximum metal utilization efficiency show great potential for sustainable catalytic applications and fundamental mechanistic studies. We here provide a convenient molecular tailoring strategy based on graphitic carbon nitride as support for the rational design of single-site and dual-site single-atom catalysts. Catalysts with single Fe sites exhibit impressive oxygen reduction reaction activity with a half-wave potential of 0.89 V vs. RHE. We find that the single Ni sites are favorable to promote the key structural reconstruction into bridging Ni-O-Fe bonds in dual-site NiFe SAC. Meanwhile, the newly formed Ni-O-Fe bonds create spin channels for electron transfer, resulting in a significant improvement of the oxygen evolution reaction activity with an overpotential of 270 mV at 10 mA cm-2. We further reveal that the water oxidation reaction follows a dual-site pathway through the deprotonation of *OH at both Ni and Fe sites, leading to the formation of bridging O2 atop the Ni-O-Fe sites.

7.
J Am Chem Soc ; 143(37): 15022-15038, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499506

RESUMEN

The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein, we tackle two key open questions after decades of research into cobalt-assisted visible-light-driven water oxidation: What makes simple cobalt-based precipitates so highly active-and to what extent do we need Co-WOC design? Hence, we started from Co(NO3)2 to generate a precursor precipitate, which transforms into a highly active WOC during the photocatalytic process with a [Ru(bpy)3]2+/S2O82-/borate buffer standard assay that outperforms state of the art cobalt catalysts. The structural transformations of these nanosized Co catalysts were monitored with a wide range of characterization techniques. The results reveal that the precipitated catalyst does not fully change into an amorphous CoOx material but develops some crystalline features. The transition from the precipitate into a disordered Co3O4 material proceeds within ca. 1 min, followed by further transformation into highly active disordered CoOOH within the first 10 min. Furthermore, under noncatalytic conditions, the precursor directly transforms into CoOOH. Moreover, fast precipitation and isolation afford a highly active precatalyst with an exceptional O2 yield of 91% for water oxidation with the visible-light-driven [Ru(bpy)3]2+/S2O82- assay, which outperforms a wide range of carefully designed Co-containing WOCs. We thus demonstrate that high-performance cobalt-based OER catalysts indeed emerge effortlessly from a self-optimization process favoring the formation of Co(III) centers in all-octahedral environments. This paves the way to new low-maintenance flow chemistry OER processes.

8.
Angew Chem Int Ed Engl ; 60(34): 18380-18396, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-33761172

RESUMEN

We review the current understanding of charge carriers in model hematite photoanodes at different stages. The origin of charge carriers is discussed based on the electronic structure and absorption features, highlighting the controversial assignment of the electronic transitions near the absorption edge. Next, the dynamic evolution of charge carriers is analyzed both on the ultrafast and on the surface reaction timescales, with special emphasis on the arguable spectroscopic assignment of electrons/holes and their kinetics. Further, the competitive charge transfer centers at the solid-liquid interface are reviewed, and the chemical nature of relevant surface states is updated. Finally, an overview on the function of widely employed surface cocatalysts is given to illustrate the complex influence of physiochemical modifications on the charge carrier dynamics. The understanding of charge carriers from their origin all the way to their interfacial transfer is vital for the future of photoanode design.

9.
Nat Commun ; 12(1): 255, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431853

RESUMEN

Understanding the function of surface states on photoanodes is crucial for unraveling the underlying reaction mechanisms of water oxidation. For hematite photoanodes, only one type of surface states with higher oxidative energy (S1) has been proposed and verified as reaction intermediate, while the other surface state located at lower potentials (S2) was assigned to inactive or recombination sites. Through employing rate law analyses and systematical (photo)electrochemical characterizations, here we show that S2 is an active reaction intermediate for water oxidation as well. Furthermore, we demonstrate that the reaction kinetics and dynamic interactions of both S1 and S2 depend significantly on operational parameters, such as illumination intensity, nature of the electrolyte, and applied potential. These insights into the individual reaction kinetics and the interplay of both surface states are decisive for designing efficient photoanodes.

10.
ACS Nano ; 14(10): 13279-13293, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33048543

RESUMEN

Single atom catalysts (SACs) are ideal model systems in catalysis research. Here we employ SACs to address the fundamental catalytic challenge of generating well-defined active metal centers to elucidate their interactions with coordinating atoms, which define their catalytic performance. We introduce a soft-landing molecular strategy for tailored SACs based on metal phthalocyanines (MPcs, M = Ni, Co, Fe) on graphene oxide (GO) layers to generate well-defined model targets for mechanistic studies. The formation of electronic channels through π-π conjugation with the graphene sheets enhances the MPc-GO performance in both oxygen evolution and reduction reactions (OER and ORR). Density functional theory (DFT) calculations unravel that the outstanding ORR activity of FePc-GO among the series is due to the high affinity of Fe atoms toward O2 species. Operando X-ray absorption spectroscopy and DFT studies demonstrate that the OER performance of the catalysts relates to thermodynamic or kinetic control at low- or high-potential ranges, respectively. We furthermore provide evidence that the participation of ligating N and C atoms around the metal centers provides a wider selection of active OER sites for both NiPc-GO and CoPc-GO. Our strategy promotes the understanding of coordination-activity relationships of high-performance SACs and their optimization for different processes through tailored combinations of metal centers and suitable ligand environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...