Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(24): 4727-4738, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32354856

RESUMEN

Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.


Asunto(s)
Conducta Consumatoria/fisiología , Ingestión de Alimentos/fisiología , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/fisiología , Masculino , Ratones , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Optogenética , Recompensa
2.
Sci Transl Med ; 10(442)2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29794060

RESUMEN

The brain is emerging as an important regulator of systemic glucose metabolism. Accumulating data from animal and observational human studies suggest that striatal dopamine signaling plays a role in glucose regulation, but direct evidence in humans is currently lacking. We present a series of experiments supporting the regulation of peripheral glucose metabolism by striatal dopamine signaling. First, we present the case of a diabetes patient who displayed strongly reduced insulin requirements after treatment with bilateral deep brain stimulation (DBS) targeting the anterior limb of the internal capsule. Next, we show that DBS in this striatal area, which induced dopamine release, increased hepatic and peripheral insulin sensitivity in 14 nondiabetic patients with obsessive-compulsive disorder. Conversely, systemic dopamine depletion reduced peripheral insulin sensitivity in healthy subjects. Supporting these human data, we demonstrate that optogenetic activation of dopamine D1 receptor-expressing neurons in the nucleus accumbens increased glucose tolerance and insulin sensitivity in mice. Together, these findings support the hypothesis that striatal neuronal activity regulates systemic glucose metabolism.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Glucosa/metabolismo , Animales , Estimulación Encefálica Profunda , Diabetes Mellitus/metabolismo , Femenino , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Músculos/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Optogenética , Adulto Joven
3.
PLoS One ; 6(11): e27180, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22076135

RESUMEN

Leptin acts on the ventral tegmental area (VTA) to modulate neuronal function and feeding behavior in rats and mice. To identify the intracellular effectors of the leptin receptor (Lepr), downstream signal transduction events were assessed for regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2) were increased in the VTA while phospho-AKT (pAKT) was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2) inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores de Leptina/metabolismo , Transducción de Señal , Área Tegmental Ventral/metabolismo , Animales , Western Blotting , Butadienos/farmacología , Neuronas Dopaminérgicas/metabolismo , Electrofisiología , Inhibidores Enzimáticos/farmacología , Leptina/metabolismo , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Área Tegmental Ventral/citología
4.
Physiol Behav ; 91(5): 499-505, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17292426

RESUMEN

Increasing rates of obesity have alarmed health officials and prompted much public dialogue. While the factors leading to obesity are numerous, an inability to control intake of freely available food is central to the problem. In order to understand this, we need to better define the mechanisms by which the brain regulates food intake, and why it is often difficult to control consumption. From this point of view, it seems valuable to consider the commonalities between food intake and drug abuse. While research in the two fields has historically emphasized different neural substrates, recent data have increased interest in better defining elements that may underlie both drug addiction and obesity. Here we discuss some of these shared elements with an emphasis on emerging areas of research that better define common mechanisms leading to overconsumption.


Asunto(s)
Conducta Adictiva/fisiopatología , Obesidad/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Conducta Adictiva/psicología , Encéfalo/fisiopatología , Humanos , Obesidad/psicología , Trastornos Relacionados con Sustancias/psicología
5.
Neuron ; 51(6): 801-10, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16982424

RESUMEN

The leptin hormone is critical for normal food intake and metabolism. While leptin receptor (Lepr) function has been well studied in the hypothalamus, the functional relevance of Lepr expression in the ventral tegmental area (VTA) has not been investigated. The VTA contains dopamine neurons that are important in modulating motivated behavior, addiction, and reward. Here, we show that VTA dopamine neurons express Lepr mRNA and respond to leptin with activation of an intracellular JAK-STAT pathway and a reduction in firing rate. Direct administration of leptin to the VTA caused decreased food intake while long-term RNAi-mediated knockdown of Lepr in the VTA led to increased food intake, locomotor activity, and sensitivity to highly palatable food. These data support a critical role for VTA Lepr in regulating feeding behavior and provide functional evidence for direct action of a peripheral metabolic signal on VTA dopamine neurons.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Dopamina/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Expresión Génica , Hibridación Fluorescente in Situ , Técnicas In Vitro , Infusiones Intravenosas , Leptina/administración & dosificación , Leptina/farmacología , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Leptina , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo
6.
Genes Dev ; 17(20): 2514-9, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14561774

RESUMEN

In a genetic screen for mutations that restrict cell growth and organ size, we identified a new tumor suppressor gene, dMST, which encodes the Drosophila homolog of the mammalian Ste20 kinase family members MST1 and MST2. Loss-of-function mutations in dMST result in overgrown tissues containing more cells of normal size. dMST mutant cells exhibit elevated levels of Cyclin E and DIAP1, increased cell growth and proliferation, and impaired apoptosis. dMST forms a complex with Sav and Wts, two tumor suppressors also implicated in regulating both cell proliferation and apoptosis, suggesting that they act in common pathways.


Asunto(s)
Apoptosis/fisiología , División Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Drosophila/enzimología , Drosophila/genética , Ojo/patología , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética
7.
Arch Biochem Biophys ; 413(2): 243-52, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12729623

RESUMEN

Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Animales , Bovinos , Cromatografía en Capa Delgada , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...