Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Mol Neurobiol ; 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37966683

Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.

2.
PLoS Genet ; 19(10): e1010988, 2023 Oct.
Article En | MEDLINE | ID: mdl-37831730

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.


Huntington Disease , Mice , Animals , Huntington Disease/genetics , Huntington Disease/pathology , RNA, Circular/genetics , RNA Splicing , Alternative Splicing/genetics , Gene Expression Profiling , Trinucleotide Repeat Expansion/genetics , Huntingtin Protein/genetics
3.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Article En | MEDLINE | ID: mdl-36537238

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Alternative Splicing , Cadherins , Histones , Chromatin , Histones/metabolism , Lysine/metabolism , RNA/metabolism , Cadherins/genetics , Humans , Induced Pluripotent Stem Cells , Neural Stem Cells , Autism Spectrum Disorder/genetics
4.
Cell Rep ; 41(8): 111686, 2022 11 22.
Article En | MEDLINE | ID: mdl-36417868

Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia-touching plaques, neighboring plaques, and far from plaques in an aged Alzheimer's mouse model with late plaque development. In 18-month-old APPNL-F/NL-F knockin mice, with and without the Alzheimer's disease risk mutation Trem2R47H/R47H, we report that expression of 38/55 PIGs have plaque-induced microglial upregulation, with a subset only upregulating in microglia directly contacting plaques. For seven PIGs, including Trem2, this upregulation is prevented in APPNL-F/NL-FTrem2R47H/R47H mice. These TREM2-dependent genes are all involved in phagocytic and degradative processes that we show correspond to a decrease in phagocytic markers and an increase in the density of small plaques in Trem2-mutated mice. Furthermore, despite the R47H mutation preventing increased Trem2 gene expression, TREM2 protein levels and microglial density are still marginally increased on plaques. Hence, both microglial contact with plaques and functioning TREM2 are necessary for microglia to respond appropriately to amyloid pathology.


Alzheimer Disease , Amyloidosis , Animals , Mice , Microglia/metabolism , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
5.
Life (Basel) ; 12(10)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36295074

Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.

7.
Mol Neurodegener ; 16(1): 47, 2021 07 15.
Article En | MEDLINE | ID: mdl-34266459

BACKGROUND: Microglia are active modulators of Alzheimer's disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. METHODS: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer's disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. RESULTS: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. CONCLUSIONS: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer's disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer's disease.


Alzheimer Disease , Disease Models, Animal , Gene Knock-In Techniques/methods , Microglia/metabolism , Plaque, Amyloid/pathology , Synaptic Transmission/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Humans , Mice
8.
Biology (Basel) ; 9(6)2020 Jun 26.
Article En | MEDLINE | ID: mdl-32604825

The COVID-19 pandemic is rising at an unprecedented rate. The surging number of deaths every day, global lockdown and travel restrictions have resulted in huge losses to society. The impact is massive and will leave a historical footprint. The Spanish Flu of 1918, which was the last pandemic that had a similar impact, was shadowed under the consequences of World War I. All the brilliance, strength and economies of countries worldwide are aimed at fighting the COVID-19 pandemic. The knowledge about coronavirus dynamics, its nature and epidemiology are expanding every day. The present review aims to summarize the structure, epidemiology, symptoms, statistical status of the disease status, intervention strategies and deliberates the lessons learnt during the pandemic. The intervention approaches, antiviral drug repurposing and vaccine trials are intensified now. Statistical interpretations of disease dynamics and their projections may help the decision-makers.

9.
Arab J Chem ; 13(11): 8069-8079, 2020 Nov.
Article En | MEDLINE | ID: mdl-34909057

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that originated in Chinese city of Wuhan has caused around 906,092 deaths and 28,040,853 confirmed cases worldwide (https://covid19.who.int/, 11 September 2020). In a life-threatening situation, where there is no specific and licensed anti-COVID-19 vaccine or medicine available; the repurposed drug might act as a silver bullet. Currently, more than 211 vaccines, 80 antibodies, 31 antiviral drugs, 35 cell-based, 6 RNA-based and 131 other drugs are in clinical trials. It is therefore utter need of the hour to develop an effective drug that can be used for the treatment of COVID-19 before a vaccine can be developed. One of the best-characterized and attractive drug targets among coronaviruses is the main protease (3CLpro). Therefore, the current study focuses on the molecular docking analysis of TAT-peptide47-57 (GRKKRRQRRRP)-conjugated repurposed drugs (i.e., lopinavir, ritonavir, favipiravir, and hydroxychloroquine) with SARS-CoV-2 main protease (3CLpro) to discover potential efficacy of TAT-peptide (TP) - conjugated repurposing drugs against SARS-CoV-2. The molecular docking results validated that TP-conjugated ritonavir, lopinavir, favipiravir, and hydroxychloroquine have superior and significantly enhanced interactions with the target SARS-CoV-2 main protease. In-silico approach employed in this study suggests that the combination of the drug with TP is an excelling alternative to develop a novel drug for the treatment of SARS-CoV-2 infected patients. The development of TP based delivery of repurposing drugs might be an excellent approach to enhance the efficacy of the existing drugs for the treatment of COVID-19. The predictions from the results obtained provide invaluable information that can be utilized for the choice of candidate drugs for in vitro, in vivo and clinical trials. The outcome from this work prove crucial for exploring and developing novel cost-effective and biocompatible TP conjugated anti-SARS-CoV-2 therapeutic agents in immediate future.

10.
PLoS Genet ; 15(3): e1007765, 2019 03.
Article En | MEDLINE | ID: mdl-30897080

Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.


Huntingtin Protein/genetics , Huntington Disease/genetics , Alleles , Animals , Cell Differentiation/genetics , Disease Models, Animal , Gene Frequency/genetics , Genotype , Huntingtin Protein/physiology , Mice/embryology , Mutation , Nerve Tissue Proteins/genetics , Phenotype
11.
Adv Exp Med Biol ; 978: 277-299, 2017.
Article En | MEDLINE | ID: mdl-28523552

Huntington's disease (HD) is a genetic, fatal autosomal dominant neurodegenerative disorder typically occurring in midlife with symptoms ranging from chorea, to dementia, to personality disturbances (Philos Trans R Soc Lond Ser B Biol Sci 354:957-961, 1999). HD is inherited in a dominant fashion, and the underlying mutation in all cases is a CAG trinucleotide repeat expansion within exon 1 of the HD gene (Cell 72:971-983, 1993). The expanded CAG repeat, translated into a lengthened glutamine tract at the amino terminus of the huntingtin protein, affects its structural properties and functional activities. The effects are pleiotropic, as huntingtin is broadly expressed in different cellular compartments (i.e., cytosol, nucleus, mitochondria) as well as in all cell types of the body at all developmental stages, such that HD pathogenesis likely starts at conception and is a lifelong process (Front Neurosci 9:509, 2015). The rate-limiting mechanism(s) of neurodegeneration in HD still remains elusive: many different processes are commonly disrupted in HD cell lines and animal models, as well as in HD patient cells (Eur J Neurosci 27:2803-2820, 2008); however, epigenetic-chromatin deregulation, as determined by the analysis of DNA methylation, histone modifications, and noncoding RNAs, has now become a prevailing feature. Thus, the overarching goal of this chapter is to discuss the current status of the literature, reviewing how an aberrant epigenetic landscape can contribute to altered gene expression and neuronal dysfunction in HD.


Epigenesis, Genetic/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Acetylation , Animals , Cell Line , Chromatin Assembly and Disassembly/genetics , Clinical Trials as Topic , DNA Methylation/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Histone Code/genetics , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/physiology , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/physiology , Homeostasis , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Methylation , Myeloid-Lymphoid Leukemia Protein/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Polycomb-Group Proteins/physiology , Protein Processing, Post-Translational/genetics , RNA, Untranslated/genetics
12.
J Biol Chem ; 285(34): 26532-44, 2010 08 20.
Article En | MEDLINE | ID: mdl-20479005

Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that PiPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by PiPT was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of PiPT (K(m) 25 mum) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of PiPT was localized to the external hyphae of P. indica colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of PiPT, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type P. indica. Higher amounts of phosphate were found in plants colonized with wild-type P. indica than that of non-colonized and plants colonized with knockdown PiPT P. indica. These observations suggest that PiPT is actively involved in the phosphate transportation and, in turn, P. indica helps improve the nutritional status of the host plant.


Basidiomycota/chemistry , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plant Roots/microbiology , Symbiosis/physiology , Biological Transport , Cloning, Molecular , Genes, Fungal/genetics , Hyphae , Kinetics , Protein Conformation , Zea mays/microbiology
...