Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Death Dis ; 15(5): 358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777849

RESUMEN

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of ß-arrestin1 (ß-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/ß-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin ß1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or ß-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/ß-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Podosomas , beta-Arrestina 1 , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Podosomas/metabolismo , Endotelina-1/metabolismo , Metástasis de la Neoplasia , Receptor de Endotelina A/metabolismo , Transducción de Señal , Matriz Extracelular/metabolismo , Movimiento Celular , Proliferación Celular , Animales , Fibroblastos/metabolismo , Invasividad Neoplásica
2.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652325

RESUMEN

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Asunto(s)
Acetiltransferasas , Proteínas de Microtúbulos , Tubulina (Proteína) , Humanos , Acetiltransferasas/metabolismo , Acetiltransferasas/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Animales , Procesamiento Proteico-Postraduccional , Acetilación , Microtúbulos/metabolismo , Mitosis , Movimiento Celular , Neoplasias/patología , Neoplasias/enzimología , Neoplasias/metabolismo , Citoesqueleto/metabolismo
5.
J Med Chem ; 66(10): 6591-6616, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37155735

RESUMEN

KAT8 is a lysine acetyltransferase primarily catalyzing the acetylation of Lys16 of histone H4 (H4K16). KAT8 dysregulation is linked to the development and metastatization of many cancer types, including non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML). Few KAT8 inhibitors have been reported so far, none of which displaying selective activity. Based on the KAT3B/KDAC inhibitor C646, we developed a series of N-phenyl-5-pyrazolone derivatives and identified compounds 19 and 34 as low-micromolar KAT8 inhibitors selective over a panel of KATs and KDACs. Western blot, immunofluorescence, and CETSA experiments demonstrated that both inhibitors selectively target KAT8 in cells. Moreover, 19 and 34 exhibited mid-micromolar antiproliferative activity in different cancer cell lines, including NSCLC and AML, without impacting the viability of nontransformed cells. Overall, these compounds are valuable tools for elucidating KAT8 biology, and their simple structures make them promising candidates for future optimization studies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Leucemia Mieloide Aguda , Neoplasias Pulmonares , Lisina Acetiltransferasas , Humanos , Lisina Acetiltransferasas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Histonas/metabolismo , Acetilación , Histona Acetiltransferasas/metabolismo
6.
Eur J Neurol ; 30(6): 1734-1744, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36815539

RESUMEN

BACKGROUND AND PURPOSE: Microtubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin-enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required. METHODS: An automated, simple, fast and non-invasive cell imaging-based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells. RESULTS: It was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4-hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4-hereditary spastic paraplegia from healthy donors and other hereditary spastic paraplegia subtypes. In addition, it is shown that our method can detect the effects of spastin protein level changes. CONCLUSIONS: These findings open the possibility of a rapid, non-invasive, inexpensive test useful to recognize SPG4-hereditary spastic paraplegia subtype and evaluate the effects of spastin-enhancing drug in non-neuronal cells.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Leucocitos Mononucleares , Proyectos Piloto , Mutación
7.
Autophagy ; 19(7): 2078-2093, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36704963

RESUMEN

Macroautophagy/autophagy has been shown to exert a dual role in cancer i.e., promoting cell survival or cell death depending on the cellular context and the cancer stage. Therefore, development of potent autophagy modulators, with a clear mechanistic understanding of their target action, has paramount importance in both mechanistic and clinical studies. In the process of exploring the mechanism of action of a previously identified cytotoxic small molecule (SM15) designed to target microtubules and the interaction domain of microtubules and the kinetochore component NDC80/HEC1, we discovered that the molecule acts as a potent autophagy inhibitor. By using several biochemical and cell biology assays we demonstrated that SM15 blocks basal autophagic flux by inhibiting the fusion of correctly formed autophagosomes with lysosomes. SM15-induced autophagic flux blockage promoted apoptosis-mediated cell death associated with ROS production. Interestingly, autophagic flux blockage, apoptosis induction and ROS production were rescued by genetic or pharmacological inhibition of OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) or by expressing an O-GlcNAcylation-defective mutant of the SNARE fusion complex component SNAP29, pointing to SNAP29 as the molecular target of SM15 in autophagy. Accordingly, SM15 was found to enhance SNAP29 O-GlcNAcylation and, thereby, inhibit the formation of the SNARE fusion complex. In conclusion, these findings identify a new pathway in autophagy connecting O-GlcNAcylated SNAP29 to autophagic flux blockage and autophagosome accumulation, that, in turn, drives ROS production and apoptotic cell death. Consequently, modulation of SNAP29 activity may represent a new opportunity for therapeutic intervention in cancer and other autophagy-associated diseases.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Autofagia/fisiología , Macroautofagia , Especies Reactivas de Oxígeno/metabolismo , Lisosomas/metabolismo , Proteínas SNARE/metabolismo , Apoptosis
8.
J Enzyme Inhib Med Chem ; 38(1): 2163242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36629431

RESUMEN

Androgen deprivation therapy (ADT) is a common treatment for recurrent prostate cancer (PC). However, after a certain period of responsiveness, ADT resistance occurs virtually in all patients and the disease progresses to lethal metastatic castration-resistant prostate cancer (mCRPC). Aberrant expression and function of the epigenetic modifiers EZH2 and BET over activates c-myc, an oncogenic transcription factor critically contributing to mCRPC. In the present work, we tested, for the first time, the combination of an EZH2 inhibitor with a BET inhibitor in metastatic PC cells. The combination outperformed single drugs in inhibiting cell viability, cell proliferation and clonogenic ability, and concomitantly reduced both c-myc and NF-kB expression. Although these promising results will warrant further in vivo validation, they represent the first step to establishing the rationale that the proposed combination might be suitable for mCRPC treatment, by exploiting molecular targets different from androgen receptor.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Factores de Transcripción , Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Betaína-Homocisteína S-Metiltransferasa/metabolismo
9.
Eur J Med Chem ; 246: 114997, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502578

RESUMEN

We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.


Asunto(s)
Apoptosis , Linfoma , Humanos , Muerte Celular , Mitosis , Células HeLa , Tubulina (Proteína)/metabolismo , Linfoma/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular
10.
ChemMedChem ; 18(3): e202200510, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36250286

RESUMEN

Schistosoma mansoni HDAC8 is a reliable target to fight schistosomiasis, and several inhibitors have been reported in the literature up to now. Nevertheless, only a few displayed selectivity over the human deacetylases and some exhibited very low or no activity against parasite larvae and/or adult worms. We report here the in vitro enzyme and biological activity of a small library of HDAC inhibitors from our lab, in many cases exhibiting submicromolar/nanomolar potency against smHDAC8 and diverse degrees of selectivity over hHDAC1 and/or hHDAC6. Such compounds were tested against schistosomula, and a selection of them against the adult forms of S. mansoni, to detect their effect on viability. Some of them showed the highest viability reduction for the larval stage with IC50 values around 1 µM and/or displayed ∼40-50 % activity in adult worms at 10 µM, joined to moderate to no toxicity in human fibroblast MRC-5 cells.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Schistosoma mansoni , Esquistosomiasis , Adulto , Animales , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/genética , Larva/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/genética , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/genética
11.
Cancer Gene Ther ; 30(1): 124-136, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36117234

RESUMEN

p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Autofagia , Oxidación-Reducción
12.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201453

RESUMEN

BACKGROUND: Although autophagy is a pro-survival process of tumor cells, it can stimulate cell death in particular conditions and when differently regulated by specific signals. We previously demonstrated that the selective stimulation of the M2 muscarinic receptor subtype (mAChR) negatively controls cell proliferation and survival and causes oxidative stress and cytotoxic and genotoxic effects in both GBM cell lines and GBM stem cells (GSCs). In this work, we have evaluated whether autophagy was induced as a downstream mechanism of the observed cytotoxic processes induced by M2 mAChR activation by the orthosteric agonist APE or the dualsteric agonist N8-Iper (N8). METHODS: To assess the activation of autophagy, we analyzed the expression of LC3B using Western blot analysis and in LC3B-EGFP transfected cell lines. Apoptosis was assessed by measuring the protein expression of Caspases 3 and 9. RESULTS: Our data indicate that activation of M2 mAChR by N8 promotes autophagy in both U251 and GB7 cell lines as suggested by the LC3B-II expression level and analysis of the transfected cells by fluorescence microscopy. Autophagy induction by M2 mAChRs is regulated by the decreased activity of the PI3K/AKT/mTORC1 pathway and upregulated by pAMPK expression. Downstream of autophagy activation, an increase in apoptosis was also observed in both cell lines after treatment with the two M2 agonists. CONCLUSIONS: N8 treatment causes autophagy via pAMPK upregulation, followed by apoptosis in both investigated cell lines. In contrast, the absence of autophagy in APE-treated GSC cells seems to indicate that cell death could be triggered by mechanisms alternative to those observed for N8.

13.
ACS Infect Dis ; 8(7): 1356-1366, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732073

RESUMEN

Neglected tropical diseases (NTDs), including trypanosomiasis, leishmaniasis, and schistosomiasis, result in a significant burden in terms of morbidity and mortality worldwide every year. Current antiparasitic drugs suffer from several limitations such as toxicity, no efficacy toward all of the forms of the parasites' life cycle, and/or induction of resistance. Histone-modifying enzymes play a crucial role in parasite growth and survival; thus, the use of epigenetic drugs has been suggested as a strategy for the treatment of NTDs. We tested structurally different HDACi 1-9, chosen from our in-house library or newly synthesized, against Trypanosoma cruzi, Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all of the tested parasites, but it was too toxic against host cells, hampering further studies. The retinoic 2'-aminoanilide 8 was less potent than 4 in all parasitic assays, but as its toxicity is considerably lower, it could be the starting structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite growth combined with moderate toxicity. In S. mansoni, 4's close analogs 17-20 were tested in new transformed schistosomula (NTS) and adult worms displaying high death induction against both parasite forms. Among them, 17 and 19 exhibited very low toxicity in human retinal pigment epithelial (RPE) cells, thus being promising compounds for further optimization.


Asunto(s)
Enfermedad de Chagas , Leishmania , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Inhibidores de Histona Desacetilasas/farmacología , Schistosoma mansoni
14.
Eur J Med Chem ; 237: 114410, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35525212

RESUMEN

LSD1 is a histone lysine demethylase proposed as therapeutic target in cancer. Chemical modifications applied at C2, C4 and/or C7 positions of the quinazoline core of the previously reported dual LSD1/G9a inhibitor 1 led to a series of non-covalent, highly active, and selective LSD1 inhibitors (2-4 and 6-30) and to the dual LSD1/G9a inhibitor 5 that was more potent than 1 against LSD1. In THP-1 and MV4-11 leukemic cells, the most potent compounds (7, 8, and 29) showed antiproliferative effects at sub-micromolar level without significant toxicity at 1 µM in non-cancer AHH-1 cells. In MV4-11 cells, the new derivatives increased the levels of the LSD1 histone mark H3K4me2 and induced the re-expression of the CD86 gene silenced by LSD1, thereby confirming the inhibition of LSD1 at cellular level. In breast MDA-MB-231 as well as in rhabdomyosarcoma RD and RH30 cells, taken as examples of solid tumors, the same compounds displayed cell growth arrest in the same IC50 range, highlighting a crucial anticancer role for LSD1 inhibition and suggesting no added value for the simultaneous G9a inhibition in these tumor cell lines.


Asunto(s)
Inhibidores Enzimáticos , Leucemia , Línea Celular Tumoral , Proliferación Celular , Inhibidores Enzimáticos/química , Histona Demetilasas , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo
15.
Theranostics ; 12(5): 2427-2444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265218

RESUMEN

Bcl-2 family anti-apoptotic proteins are overexpressed in several hematological and solid tumors, and contribute to tumor formation, progression, and resistance to therapy. They represent a promising therapeutic avenue to explore for cancer treatment. Venetoclax, a Bcl-2 inhibitor is currently used for hematological malignancies or is undergoing clinical trials for either hematological or solid tumors. Despite these progresses, ongoing efforts are focusing on the identification and development of new molecules targeting Bcl-2 protein and/or other family members. Methods: Machine learning guided virtual screening followed by surface plasmon resonance, molecular docking and pharmacokinetic analyses were performed to identify new inhibitors of anti-apoptotic members of Bcl-2 family and their pharmacokinetic profile. The sensitivity of cancer cells from different origin to the identified compounds was evaluated both in in vitro (cell survival, apoptosis, autophagy) and in vivo (tumor growth in nude mice) preclinical models. Results: IS20 and IS21 were identified as potential new lead compounds able to bind Bcl-2, Bcl-xL and Mcl-1 recombinant proteins. Molecular docking investigation indicated IS20 and IS21 could bind into the Beclin-1 BH3 binding site of wild type Bcl-2, Bcl-xL and Mcl-1 proteins. In particular, although the IS21 docked conformation did not show a unique binding mode, it clearly showed its ability in flexibly adapting to either BH3 binding sites. Moreover, both IS20 and IS21 reduced cell viability, clonogenic ability and tumor sphere formation, and induced apoptosis in leukemic, melanoma and lung cancer cells. Autophagosome formation and maturation assays demonstrated induction of autophagic flux after treatment with IS20 or IS21. Experiments with z-VAD-fmk, a pan-caspase inhibitor, and chloroquine, a late-stage autophagy inhibitor, demonstrated the ability of the two compounds to promote apoptosis by autophagy. IS21 also reduced in vivo tumor growth of both human leukemia and melanoma models. Conclusion: Virtual screening coupled with in vitro and in vivo experimental data led to the identification of two new promising inhibitors of anti-apoptotic proteins with good efficacy in the binding to recombinant Bcl-2, Bcl-xL and Mcl-1 proteins, and against different tumor histotypes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Melanoma , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Aprendizaje Automático , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides
16.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884931

RESUMEN

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirroles/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química , Azepinas/metabolismo , Azepinas/farmacología , Benzazepinas/metabolismo , Benzazepinas/farmacología , Sitios de Unión , Unión Competitiva , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogénica N-Myc/química , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacología , Pirroles/metabolismo , Resonancia por Plasmón de Superficie
17.
J Med Chem ; 64(23): 17031-17050, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34843649

RESUMEN

MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4-6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.


Asunto(s)
Dioxigenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Ribosomas/enzimología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalización , Dioxigenasas/química , Dioxigenasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Especificidad por Sustrato
18.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34359754

RESUMEN

The impact of protein-coding genes on cancer onset and progression is a well-established paradigm in molecular oncology. Nevertheless, unveiling the contribution of the noncoding genes-including long noncoding RNAs (lncRNAs)-to tumorigenesis represents a great challenge for personalized medicine, since they (i) constitute the majority of the human genome, (ii) are essential and flexible regulators of gene expression and (iii) present all types of genomic alterations described for protein-coding genes. LncRNAs have been increasingly associated with cancer, their highly tissue- and cancer type-specific expression making them attractive candidates as both biomarkers and therapeutic targets. Medulloblastoma is one of the most common malignant pediatric brain tumors. Group 3 is the most aggressive subgroup, showing the highest rate of metastasis at diagnosis. Transcriptomics and reverse genetics approaches were combined to identify lncRNAs implicated in Group 3 Medulloblastoma biology. Here we present the first collection of lncRNAs dependent on the activity of the MYC oncogene, the major driver gene of Group 3 Medulloblastoma. We assessed the expression profile of selected lncRNAs in Group 3 primary tumors and functionally characterized these species. Overall, our data demonstrate the direct involvement of three lncRNAs in Medulloblastoma cancer cell phenotypes.

19.
Drug Discov Today ; 26(5): 1126-1135, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545382

RESUMEN

Prosurvival and antiapoptotic B cell lymphoma-2 (Bcl-2) family proteins are often overexpressed in cutaneous melanoma, one of the most aggressive types of human cancer. They are also implicated in resistance to therapy and participate in melanoma progression by regulating various processes, including cell proliferation, migration, invasion, and crosstalk with the tumor microenvironment. In this review, we summarize recent findings related to prosurvival members of the Bcl-2 family beyond their canonical functions in the apoptotic pathway, mainly focusing on their potential roles as diagnostic and prognostic biomarkers in cutaneous melanoma. We also provide an overview of different approaches used to inhibit Bcl-2 proteins in preclinical and clinical studies, which are mainly based on the inhibition of protein expression or the disruption of their antiapoptotic functions.


Asunto(s)
Melanoma/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Cutáneas/patología , Animales , Apoptosis/fisiología , Biomarcadores de Tumor/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Humanos , Melanoma/diagnóstico , Pronóstico , Neoplasias Cutáneas/diagnóstico , Microambiente Tumoral
20.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008169

RESUMEN

Microtubules are key components of the cytoskeleton of eukaryotic cells. Microtubule dynamic instability together with the "tubulin code" generated by the choice of different α- and ß- tubulin isoforms and tubulin post-translational modifications have essential roles in the control of a variety of cellular processes, such as cell shape, cell motility, and intracellular trafficking, that are deregulated in cancer. In this review, we will discuss available evidence that highlights the crucial role of the tubulin code in determining different cancer phenotypes, including metastatic cell migration, drug resistance, and tumor vascularization, and the influence of modulating tubulin-modifying enzymes on cancer cell survival and aggressiveness. We will also discuss the role of post-translationally modified microtubules in autophagy-the lysosomal-mediated cellular degradation pathway-that exerts a dual role in many cancer types, either promoting or suppressing cancer growth. We will give particular emphasis to the role of tubulin post-translational modifications and their regulating enzymes in controlling the different stages of the autophagic process in cancer cells, and consider how the experimental modulation of tubulin-modifying enzymes influences the autophagic process in cancer cells and impacts on cancer cell survival and thereby represents a new and fruitful avenue in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...