Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726925

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
2.
Physiol Rep ; 7(23): e14306, 2019 12.
Article En | MEDLINE | ID: mdl-31814309

C1q/TNF-related protein 3 (CTRP3) is a relatively novel adipose tissue-derived cytokine (adipokine) which has been linked to improved glucose regulation and insulin sensitivity. However, the relationship between circulating CTRP3 levels and diabetes is controversial. CTRP3 can circulate in different oligomeric complexes: trimeric, hexameric, and high molecular weight (HMW) oligomeric complexes. However, the concentration of the different oligomeric complexes in human disease states has not been previously investigated. Therefore, the purpose of this study was to compare the levels of different oligomeric complexes of CTRP3 between type 2 diabetic and nondiabetic individuals. Additionally, the association between the oligomeric complexes and other serum factors was examined. CTRP3 primarily circulates in the HMW complex (>50%) and the hexametric multimer, with no CTRP3 detected in the trimeric complex or as a monomer. Further, no differences were observed in total, hexameric, or HMW CTRP3 levels regardless of diabetic status. Surprisingly, HMW CTRP3 was found to be positively correlated with circulating triglyceride levels. Combined, these data suggest that CTRP3 is associated with triglyceride regulation, not diabetic status. These data may explain some of the discrepancies in the literature as elevated triglyceride levels are often detected in patients with obesity and type 2 diabetes.


Diabetes Mellitus, Type 2/blood , Protein Multimerization , Triglycerides/blood , Tumor Necrosis Factors/blood , Adult , Aged , Cytokines/blood , Female , Humans , Male , Middle Aged , Tumor Necrosis Factors/metabolism
3.
Am J Physiol Endocrinol Metab ; 315(5): E949-E960, 2018 11 01.
Article En | MEDLINE | ID: mdl-29763374

This study tested the ability of a novel adipose tissue derived cytokine, C1q TNF-related protein-3 (CTRP3), to prevent alcohol-induced hepatic lipid accumulation, or alcoholic fatty liver disease (ALD). Previous work has demonstrated that CTRP3 is effective at preventing high-fat diet-induced fatty liver; however, the potential of CTRP3 to inhibit ALD has not been explored. To test the potential protective effects of CTRP3, transgenic mice overexpressing CTRP3 (Tg) or wild-type littermates (WT) were subjected to one of two different models of ALD. In the first model, known as the NIAAA model, mice were fed control or alcohol-containing liquid diets (5% vol/vol) for 10 days followed by a single gavage of ethanol (5 g/kg). In the second model, the chronic model, mice were fed control or alcohol-containing diets for 6 wk with no gavage. This study found that CTRP3 reduced triglyceride accumulation in the chronic model of alcohol consumption by ~50%, whereas no reduction was observed in the NIAAA model. Further analysis of isolated primary hepatocytes from WT and Tg mice demonstrated that CTRP3 increased oxygen consumption in the presence of fatty acids, indicating that CTRP3 increases hepatic fatty acid utilization. In conclusion, this study indicates that CTRP3 attenuates hepatic triglyceride accumulation in response to long-term chronic, but not short-term, alcohol consumption.


Adipokines/genetics , Ethanol/pharmacology , Fatty Liver, Alcoholic/genetics , Lipid Metabolism/genetics , Liver/drug effects , Triglycerides/metabolism , Adipokines/metabolism , Animals , Diet, High-Fat , Fatty Liver, Alcoholic/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , Male , Mice , Mice, Transgenic
...