Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39287685

RESUMEN

Two recent papers by Mehta et al. and Zhu et al. in this issue (https://doi.org/10.1083/jcb.202311191) discover that synaptotagmin-1, the primary calcium sensor at the synapse, forms biomolecular condensates, identifying a new layer of regulation in calcium-triggered synaptic vesicle exocytosis.


Asunto(s)
Calcio , Exocitosis , Sinapsis , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Calcio/metabolismo , Sinapsis/metabolismo , Animales , Vesículas Sinápticas/metabolismo , Humanos
2.
Nano Lett ; 23(23): 10796-10801, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37862690

RESUMEN

Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.


Asunto(s)
Condensados Biomoleculares , Grafito , Grafito/metabolismo , Sinapsinas , Proteínas , Orgánulos
4.
Front Immunol ; 14: 1101087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742338

RESUMEN

Maternal autoantibodies can be transmitted diaplacentally, with potentially deleterious effects on neurodevelopment. Synapsin 1 (SYN1) is a neuronal protein that is important for synaptic communication and neuronal plasticity. While monoallelic loss of function (LoF) variants in the SYN1 gene result in X-linked intellectual disability (ID), learning disabilities, epilepsy, behavioral problems, and macrocephaly, the effect of SYN1 autoantibodies on neurodevelopment remains unclear. We recruited a clinical cohort of 208 mothers and their children with neurologic abnormalities and analyzed the role of maternal SYN1 autoantibodies. We identified seropositivity in 9.6% of mothers, and seropositivity was associated with an increased risk for ID and behavioral problems. Furthermore, children more frequently had epilepsy, macrocephaly, and developmental delay, in line with the SYN1 LoF phenotype. Whether SYN1 autoantibodies have a direct pathogenic effect on neurodevelopment or serve as biomarkers requires functional experiments.


Asunto(s)
Autoanticuerpos , Epilepsia , Discapacidad Intelectual , Humanos , Neuronas/metabolismo , Fenotipo , Sinapsinas/genética , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA