Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Am J Psychiatry ; 181(4): 299-309, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38476042

OBJECTIVE: Anxiety disorders are among the most common psychiatric disorders in youths and emerge during childhood. This is also a period of rapid white matter (WM) development, which is critical for efficient neuronal communication. Previous work in preadolescent children with anxiety disorders demonstrated anxiety disorder-related reductions in WM microstructural integrity (fractional anisotropy [FA]) in the uncinate fasciculus (UF), the major WM tract facilitating prefrontal cortical-limbic structural connectivity. Importantly, this association was found only in boys with anxiety disorders. To confirm this finding and more comprehensively understand WM changes in childhood anxiety, this mega-analytic study characterizes WM alterations related to anxiety disorders and sex in the largest sample of preadolescent children to date. METHODS: Diffusion tensor imaging data from published studies of preadolescent children with anxiety disorders and healthy volunteers (ages 8-12) (N=198) were combined with a new data set (N=97) for a total sample of 165 children with anxiety disorders and 132 healthy volunteers. Children with anxiety disorders met DSM-5 criteria for current generalized, separation, and/or social anxiety disorder. Analyses of tractography and voxel-wise data assessed between-group differences (anxiety disorder vs. healthy volunteer), effects of sex, and their interaction. RESULTS: Tract-based and voxel-wise analyses confirmed a significant reduction in UF FA in boys but not girls with anxiety disorders. Results also demonstrated other significant widespread anxiety disorder-related WM alterations specifically in boys, including in multiple commissural, association, projection, and brainstem regions. CONCLUSIONS: In addition to confirming male-specific anxiety disorder-related reductions in UF FA, the results demonstrate that anxiety disorders in boys and not girls are associated with broadly distributed WM alterations across the brain. These findings support further studies focused on understanding the extent to which WM alterations in boys with anxiety disorders are involved in pathophysiological processes that mediate anxiety disorders. The findings also suggest the possibility that WM microarchitecture could serve as a novel treatment target for childhood anxiety disorders.


White Matter , Child , Female , Humans , Male , Adolescent , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Brain/diagnostic imaging , Anxiety Disorders/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Anisotropy
2.
Psychoneuroendocrinology ; 162: 106953, 2024 Apr.
Article En | MEDLINE | ID: mdl-38232531

BACKGROUND: Evidence suggests that early life adversity is associated with maladaptive behaviors and is commonly an antecedent of stress-related psychopathology. This is particularly relevant to rearing in primate species as infant primates depend on prolonged, nurturant rearing by caregivers for normal development. To further understand the consequences of early life rearing adversity, and the relation among alterations in behavior, physiology and brain function, we assessed young monkeys that had experienced maternal separation followed by peer rearing with behavioral, endocrine and multimodal neuroimaging measures. METHODS: 50 young rhesus monkeys were studied, half of which were rejected by their mothers and peer reared, and the other half were reared by their mothers. Assessments were performed at approximately 1.8 years of age and included: threat related behavioral and cortisol responses, cerebrospinal fluid (CSF) measurements of oxytocin and corticotropin releasing hormone (CRH), and multimodal neuroimaging measures (anatomical scans, resting functional connectivity, diffusion tensor imaging, and threat-related regional glucose metabolism). RESULTS: The results demonstrated alterations across behavioral, endocrine, and neuroimaging measures in young monkeys that were reared without their mothers. At a behavioral level in response to a potential threat, peer reared animals engaged in significantly less freezing behavior (p = 0.022) along with increased self-directed behaviors (p < 0.012). Levels of oxytocin in the CSF, but not plasma, were significantly reduced in the peer reared animals (p = 0.019). No differences in plasma cortisol or CSF CRH were observed. Diffusion tensor imaging revealed significantly decreased white matter density across the brain. Exploratory correlational and permutation analyses suggest that the impact of peer rearing on behavior, endocrine and brain structural alterations are mediated by separate parallel mechanisms. CONCLUSIONS: Taken together, these results demonstrate in NHPs the importance of maternal rearing on the development of brain, behavior and hormonal systems that are linked to social functioning and adaptive responses. The findings suggest that the effects of maternal deprivation are mediated via multiple independent pathways which may account for the heterogeneity in behavioral and biological alterations observed in individuals that have experienced this early life adversity.


Adverse Childhood Experiences , Humans , Animals , Infant , Female , Diffusion Tensor Imaging , Hydrocortisone , Maternal Deprivation , Oxytocin , Corticotropin-Releasing Hormone , Macaca mulatta , Mothers
3.
Neuropsychopharmacology ; 49(2): 405-413, 2024 Jan.
Article En | MEDLINE | ID: mdl-37516801

Myelination subserves efficient neuronal communication, and alterations in white matter (WM) microstructure have been implicated in numerous psychiatric disorders, including pathological anxiety. Recent work in rodents suggests that muscarinic antagonists may enhance myelination with behavioral benefits; however, the neural and behavioral effects of muscarinic antagonists have yet to be explored in non-human primates (NHP). Here, as a potentially translatable therapeutic strategy for human pathological anxiety, we present data from a first-in-primate study exploring the effects of the muscarinic receptor antagonist solifenacin on anxious behaviors and WM microstructure. 12 preadolescent rhesus macaques (6 vehicle control, 6 experimental; 8F, 4M) were included in a pre-test/post-test between-group study design. The experimental group received solifenacin succinate for ~60 days. Subjects underwent pre- and post-assessments of: 1) anxious temperament (AT)-related behaviors in the potentially threatening no-eye-contact (NEC) paradigm (30-min); and 2) WM and regional brain metabolism imaging metrics, including diffusion tensor imaging (DTI), quantitative relaxometry (QR), and FDG-PET. In relation to anxiety-related behaviors expressed during the NEC, significant Group (vehicle control vs. solifenacin) by Session (pre vs. post) interactions were found for freezing, cooing, and locomotion. Compared to vehicle controls, solifenacin-treated subjects exhibited effects consistent with reduced anxiety, specifically decreased freezing duration, increased locomotion duration, and increased cooing frequency. Furthermore, the Group-by-Session-by-Sex interaction indicated that these effects occurred predominantly in the males. Exploratory whole-brain voxelwise analyses of post-minus-pre differences in DTI, QR, and FDG-PET metrics revealed some solifenacin-related changes in WM microstructure and brain metabolism. These findings in NHPs support the further investigation of the utility of antimuscarinic agents in targeting WM microstructure as a means to treat pathological anxiety.


White Matter , Male , Animals , Humans , White Matter/diagnostic imaging , White Matter/pathology , Muscarinic Antagonists/pharmacology , Diffusion Tensor Imaging/methods , Solifenacin Succinate/pharmacology , Macaca mulatta , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Brain/pathology , Anxiety/diagnostic imaging , Anxiety/drug therapy , Anxiety/pathology
4.
Article En | MEDLINE | ID: mdl-37583705

Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.

5.
Transl Psychiatry ; 12(1): 57, 2022 02 08.
Article En | MEDLINE | ID: mdl-35136030

Pathological anxiety typically emerges during preadolescence and has been linked to alterations in white matter (WM) pathways. Because myelination is critical for efficient neuronal communication, characterizing associations between WM microstructure and symptoms may provide insights into pathophysiological mechanisms associated with childhood pathological anxiety. This longitudinal study examined 182 girls enrolled between the ages of 9-11 that were treatment-naïve at study entry: healthy controls (n = 49), subthreshold-anxiety disorders (AD) (n = 82), or meeting DSM-5 criteria for generalized, social, and/or separation ADs (n = 51), as determined through structured clinical interview. Anxiety severity was assessed with the Clinical Global Impression Scale and Screen for Child Anxiety and Related Emotional Disorders (SCARED). Participants (n = 182) underwent clinical, behavioral, and diffusion tensor imaging (DTI) assessments at study entry, and those with pathological anxiety (subthreshold-AD and AD, n = 133) were followed longitudinally for up to 3 additional years. Cross-sectional ANCOVAs (182 scans) examining control, subthreshold-AD, and AD participants found no significant relations between anxiety and DTI measurements. However, in longitudinal analyses of girls with pathological anxiety (343 scans), linear mixed-effects models demonstrated that increases in anxiety symptoms (SCARED scores) were associated with reductions in whole-brain fractional anisotropy, independent of age (Std. ß (95% CI) = -0.06 (-0.09 to -0.03), F(1, 46.24) = 11.90, P = 0.001). Using a longitudinal approach, this study identified a dynamic, within-participant relation between whole-brain WM microstructural integrity and anxiety in girls with pathological anxiety. Given the importance of WM microstructure in modulating neural communication, this finding suggests the possibility that WM development could be a viable target in the treatment of anxiety-related psychopathology.


White Matter , Anisotropy , Anxiety/diagnostic imaging , Anxiety Disorders/diagnostic imaging , Brain/diagnostic imaging , Child , Cross-Sectional Studies , Diffusion Tensor Imaging/methods , Female , Humans , Longitudinal Studies , White Matter/diagnostic imaging , White Matter/pathology
6.
Neuroimage ; 251: 118989, 2022 05 01.
Article En | MEDLINE | ID: mdl-35151851

Alterations in white matter (WM) development are associated with many neuropsychiatric and neurodevelopmental disorders. Most MRI studies examining WM development employ diffusion tensor imaging (DTI), which relies on estimating diffusion patterns of water molecules as a reflection of WM microstructure. Quantitative relaxometry, an alternative method for characterizing WM microstructural changes, is based on molecular interactions associated with the magnetic relaxation of protons. In a longitudinal study of 34 infant non-human primates (NHP) (Macaca mulatta) across the first year of life, we implement a novel, high-resolution, T1-weighted MPnRAGE sequence to examine WM trajectories of the longitudinal relaxation rate (qR1) in relation to DTI metrics and gestational age at scan. To the best of our knowledge, this is the first study to assess developmental WM trajectories in NHPs using quantitative relaxometry and the first to directly compare DTI and relaxometry metrics during infancy. We demonstrate that qR1 exhibits robust logarithmic growth, unfolding in a posterior-anterior and medial-lateral fashion, similar to DTI metrics. On a within-subject level, DTI metrics and qR1 are highly correlated, but are largely unrelated on a between-subject level. Unlike DTI metrics, gestational age at birth (time in utero) is a strong predictor of early postnatal qR1 levels. Whereas individual differences in DTI metrics are maintained across the first year of life, this is not the case for qR1. These results point to the similarities and differences in using quantitative relaxometry and DTI in developmental studies, providing a basis for future studies to characterize the unique processes that these measures reflect at the cellular and molecular level.


White Matter , Animals , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Humans , Longitudinal Studies , Macaca mulatta , White Matter/diagnostic imaging
7.
Neuroimage ; 231: 117825, 2021 05 01.
Article En | MEDLINE | ID: mdl-33549752

White matter (WM) development early in life is a critical component of brain development that facilitates the coordinated function of neuronal pathways. Additionally, alterations in WM have been implicated in various neurodevelopmental disorders, including psychiatric disorders. Because of the need to understand WM development in the weeks immediately following birth, we characterized changes in WM microstructure throughout the postnatal macaque brain during the first year of life. This is a period in primates during which genetic, developmental, and environmental factors may have long-lasting impacts on WM microstructure. Studies in nonhuman primates (NHPs) are particularly valuable as a model for understanding human brain development because of their evolutionary relatedness to humans. Here, 34 rhesus monkeys (23 females, 11 males) were imaged longitudinally at 3, 7, 13, 25, and 53 weeks of age with T1-weighted (MPnRAGE) and diffusion tensor imaging (DTI). With linear mixed-effects (LME) modeling, we demonstrated robust logarithmic growth in FA, MD, and RD trajectories extracted from 18 WM tracts across the brain. Estimated rate of change curves for FA, MD, and RD exhibited an initial 10-week period of exceedingly rapid WM development, followed by a precipitous decline in growth rates. K-means clustering of raw DTI trajectories and rank ordering of LME model parameters revealed distinct posterior-to-anterior and medial-to-lateral gradients in WM maturation. Finally, we found that individual differences in WM microstructure assessed at 3 weeks of age were significantly related to those at 1 year of age. This study provides a quantitative characterization of very early WM growth in NHPs and lays the foundation for future work focused on the impact of alterations in early WM developmental trajectories in relation to human psychopathology.


Brain/diagnostic imaging , Brain/growth & development , Diffusion Tensor Imaging/methods , Imaging, Three-Dimensional/methods , White Matter/diagnostic imaging , White Matter/growth & development , Age Factors , Animals , Animals, Newborn , Female , Macaca mulatta , Male
8.
Biol Psychiatry ; 86(12): 890-898, 2019 12 15.
Article En | MEDLINE | ID: mdl-31542153

BACKGROUND: Anxious temperament (AT) is an early-life heritable trait that predisposes individuals to develop anxiety and depressive disorders. Our previous work in preadolescent children suggests alterations in the uncinate fasciculus (UF), the white matter tract that connects prefrontal with limbic regions, in boys with anxiety disorders. Here, using a nonhuman primate model of AT, we tested whether this sexually dimorphic finding is evolutionarily conserved and examined the extent to which heritable and environmental influences contribute to UF microstructure. METHODS: Diffusion tensor images were collected in 581 young rhesus monkeys (1.89 ± 0.77 years old; 43.9% female). Using tract-based analyses, we assessed the relationship among AT, UF microstructure (as measured with fractional anisotropy), and sex. Heritability of tract microstructure was determined using oligogenic linkage analysis of this large multigenerational pedigree. RESULTS: We predicted and found a negative relation between AT and UF fractional anisotropy in male but not female monkeys (AT × sex; p = .032, 1-tailed). Additionally, heritability analyses revealed that variation in UF fractional anisotropy was largely due to nonheritable factors (h2 = 0.185, p = .077). CONCLUSIONS: These results demonstrate a cross-species, male-specific relation between UF microstructure and anxiety and provide a potential substrate for anxiety-related prefrontal-limbic dysregulation. The heritability analyses point to the importance of environmental influences on UF microstructure, which could be important in mediating the nonheritable components of pathological anxiety. These findings have the potential to guide new treatment strategies for childhood anxiety disorders and further support the use of nonhuman primates as a translational model to discover mechanisms underlying the development of anxiety.


Anxiety/genetics , Anxiety/pathology , Brain/pathology , Sex Characteristics , White Matter/pathology , Animals , Biological Evolution , Diffusion Tensor Imaging , Disease Models, Animal , Female , Limbic Lobe/pathology , Macaca mulatta , Male , Neural Pathways/pathology , Prefrontal Cortex/pathology
9.
Am J Psychiatry ; 176(3): 208-216, 2019 03 01.
Article En | MEDLINE | ID: mdl-30654645

OBJECTIVE: Anxiety disorders are common, can result in lifelong suffering, and frequently begin before adolescence. Evidence from adults suggests that altered prefrontal-limbic connectivity is a pathophysiological feature of anxiety disorders. More specifically, in adults with anxiety disorders, decreased fractional anisotropy (FA), a measure of white matter integrity, has been observed in the uncinate fasciculus, the major tract that connects limbic and prefrontal regions. Because of the early onset of anxiety disorders and the increased incidence in anxiety disorders in females during their reproductive years, it is important to understand whether the reduction in uncinate fasciculus FA exists in children with anxiety disorders and the extent to which this alteration is sex related. To address these issues, the authors assessed FA in the uncinate fasciculus in unmedicated boys and girls with anxiety disorders. METHODS: FA measures were derived from diffusion tensor images that were acquired from 98 unmedicated children (ages 8-12); 52 met criteria for generalized anxiety disorder, separation anxiety disorder, social anxiety disorder, or anxiety disorder not otherwise specified, and 46 were matched control subjects. RESULTS: Tract-based results demonstrated that children with anxiety disorders have significant reductions in uncinate fasciculus FA. A significant sex-by-group interaction and post hoc testing revealed that this effect was evident only in boys. No other main effects or sex-by-group interactions were found for other white matter tracts. CONCLUSIONS: These findings provide evidence of uncinate fasciculus white matter alterations in boys with anxiety disorders. The data demonstrate that anxiety disorder-related alterations in prefrontal-limbic structural connectivity are present early in life, are not related to psychotropic medication exposure, and are sex specific. Building on these findings, future research has the potential to provide insights into the genesis and sexual dimorphism of the pathophysiology that leads to anxiety disorders, as well as to identify sex-specific early-life treatment targets.


Frontal Lobe/physiopathology , Neural Pathways/physiopathology , Prefrontal Cortex/physiopathology , Anxiety Disorders/physiopathology , Case-Control Studies , Child , Diffusion Tensor Imaging , Female , Frontal Lobe/diagnostic imaging , Functional Neuroimaging , Humans , Male , Neural Pathways/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Sex Factors , White Matter/diagnostic imaging , White Matter/physiopathology
10.
Brain Struct Funct ; 222(1): 21-39, 2017 01.
Article En | MEDLINE | ID: mdl-26908365

The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce â†’ BSTL and/or Ce â†” SLEAc â†” BSTL projections.


Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/physiology , Septal Nuclei/cytology , Septal Nuclei/physiology , Animals , Brain Mapping , Central Amygdaloid Nucleus/growth & development , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Macaca mulatta , Male , Neural Pathways/cytology , Neural Pathways/growth & development , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Neuroimaging , Septal Nuclei/growth & development
11.
J Exp Psychopathol ; 7(3): 311-342, 2016.
Article En | MEDLINE | ID: mdl-27917284

When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early in development, are common and challenging to treat, yet the neurocognitive mechanisms that confer increased risk have only recently begun to come into focus. Here we review recent work highlighting the importance of neural circuits centered on the amygdala. We begin by describing dispositional negativity, a core dimension of childhood temperament and adult personality and an important risk factor for the development of anxiety disorders and other kinds of stress-sensitive psychopathology. Converging lines of epidemiological, neurophysiological, and mechanistic evidence indicate that the amygdala supports stable individual differences in dispositional negativity across the lifespan and contributes to the etiology of anxiety disorders in adults and youth. Hyper-vigilance and attentional biases to threat are prominent features of the anxious phenotype and there is growing evidence that they contribute to the development of psychopathology. Anatomical studies show that the amygdala is a hub, poised to govern attention to threat via projections to sensory cortex and ascending neuromodulatory systems. Imaging and lesion studies demonstrate that the amygdala plays a key role in selecting and prioritizing the processing of threat-related cues. Collectively, these observations provide a neurobiologically-grounded framework for understanding the development and maintenance of anxiety disorders in adults and youth and set the stage for developing improved intervention strategies.

12.
Psychol Bull ; 142(12): 1275-1314, 2016 Dec.
Article En | MEDLINE | ID: mdl-27732016

Dispositional negativity-the propensity to experience and express more frequent, intense, or enduring negative affect-is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policymakers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that 3 key pathways-increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure-explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these 3 pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these 3 pathways and motivate the hypothesis that seemingly "tonic" increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes. (PsycINFO Database Record


Behavior , Brain/physiology , Animals , Emotions , Female , Happiness , Humans , Individuality , Male , Neurobiology
13.
Brain Connect ; 6(5): 415-33, 2016 06.
Article En | MEDLINE | ID: mdl-27021440

White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.


Autism Spectrum Disorder/physiopathology , White Matter/physiopathology , Adolescent , Adult , Brain/physiopathology , Brain Mapping , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Diffusion Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Neural Pathways/pathology , Young Adult
14.
Biol Psychiatry ; 80(5): 345-55, 2016 09 01.
Article En | MEDLINE | ID: mdl-27016385

BACKGROUND: Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a nonhuman primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT's neural substrates. Corticotropin-releasing factor (CRF) is expressed in the Ce, has a role in stress, and is linked to psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with assessments of anxiety and multimodal neuroimaging to understand the consequences of chronically increased CRF in the Ce region. METHODS: Using real-time intraoperative magnetic resonance imaging-guided convection-enhanced delivery, five monkeys received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 containing the CRF construct. Their cagemates served as unoperated control subjects. AT, regional brain metabolism, resting functional magnetic resonance imaging, and diffusion tensor imaging were assessed before and 2 months after viral infusions. RESULTS: Dorsal amygdala CRF overexpression significantly increased AT and metabolism within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related regions, as well as in measures of functional and structural connectivity. CONCLUSIONS: This study provides a translational roadmap that is important for understanding human psychopathology by combining molecular manipulations used in rodents with behavioral phenotyping and multimodal neuroimaging measures used in humans. The results indicate that chronic CRF overexpression in primates not only increases AT but also affects metabolism and connectivity within components of AT's neural circuitry.


Anxiety/pathology , Central Amygdaloid Nucleus/diagnostic imaging , Central Amygdaloid Nucleus/metabolism , Corticotropin-Releasing Hormone/metabolism , Neural Pathways/diagnostic imaging , Temperament , Animals , Anisotropy , Brain Mapping , Corticotropin-Releasing Hormone/genetics , Dependovirus/genetics , Diffusion Tensor Imaging , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Image Processing, Computer-Assisted , Macaca fascicularis , Macaca mulatta , Male , Oxygen/blood , RNA, Messenger/metabolism , Transduction, Genetic
15.
J Autism Dev Disord ; 45(9): 3030-40, 2015 Sep.
Article En | MEDLINE | ID: mdl-26001365

Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem's corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD.


Autistic Disorder/physiopathology , Brain Stem/physiopathology , Hand Strength , Motor Skills , White Matter/physiopathology , Adolescent , Adult , Autistic Disorder/pathology , Brain Stem/growth & development , Brain Stem/pathology , Child , Diffusion Tensor Imaging , Humans , Male , White Matter/pathology
16.
Neuropsychopharmacology ; 40(10): 2434-42, 2015 Sep.
Article En | MEDLINE | ID: mdl-25837284

Posttraumatic stress disorder (PTSD) is a debilitating disorder that has been associated with brain abnormalities, including white matter alterations. However, little is known about the effect of treatment on these brain alterations. To investigate the course of white matter alterations in PTSD, we used a longitudinal design investigating treatment effects on white matter integrity using diffusion tensor imaging (DTI). Diffusion tensor and magnetization transfer images were obtained pre- and posttreatment from veterans with (n=39) and without PTSD (n=22). After treatment, 16 PTSD patients were remitted, and 23 had persistent PTSD based on PTSD diagnosis. The dorsal and hippocampal cingulum bundle, stria terminalis, and fornix were investigated as regions of interest. Exploratory whole-brain analyses were also performed. Groups were compared with repeated-measures ANOVA for fractional anisotropy (FA), and magnetization transfer ratio. Persistently symptomatic PTSD patients had increasing FA of the dorsal cingulum over time, and at reassessment these FA values were higher than both combat controls and the remitted PTSD group. Group-by-time interactions for FA were found in the hippocampal cingulum, fornix, and stria terminalis, posterior corona radiata, and superior longitudinal fasciculus. Our results indicate that higher FA of the dorsal cingulum bundle may be an acquired feature of persistent PTSD that develops over time. Furthermore, treatment might have differential effects on the hippocampal cingulum, fornix, stria terminalis, posterior corona radiata, and superior longitudinal fasciculus in remitted vs persistent PTSD patients. This study contributes to a better understanding of the neural underpinnings of PTSD treatment outcome.


Cognitive Behavioral Therapy/methods , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/therapy , Treatment Outcome , White Matter/pathology , Adult , Functional Laterality , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Veterans , Young Adult
17.
Trends Neurosci ; 38(5): 319-29, 2015 May.
Article En | MEDLINE | ID: mdl-25851307

The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the ability of the central extended amygdala to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology.


Amygdala/cytology , Amygdala/physiology , Fear , Neurons/physiology , Animals , Gene Expression , Humans , Neural Pathways , Neuroimaging
18.
Mol Autism ; 6: 15, 2015.
Article En | MEDLINE | ID: mdl-25774283

BACKGROUND: The corpus callosum is the largest white matter structure in the brain, and it is the most consistently reported to be atypical in diffusion tensor imaging studies of autism spectrum disorder. In individuals with typical development, the corpus callosum is known to undergo a protracted development from childhood through young adulthood. However, no study has longitudinally examined the developmental trajectory of corpus callosum in autism past early childhood. METHODS: The present study used a cohort sequential design over 9 years to examine age-related changes of the corpus callosum in 100 males with autism and 56 age-matched males with typical development from early childhood (when autism can first be reliably diagnosed) to mid-adulthood (after development of the corpus callosum has been completed) (3 to 41 years of age). RESULTS: The group with autism demonstrated a different developmental trajectory of white matter microstructure in the anterior corpus callosum's (genu and body) fractional anisotropy, which suggests atypical brain maturation in these regions in autism. When analyses were broken down by age group, atypical developmental trajectories were present only in the youngest participants (10 years of age and younger). Significant main effects for group were found in terms of decreased fractional anisotropy across all three subregions of the corpus callosum (genu, body, and splenium) and increased mean diffusivity, radial diffusivity, and axial diffusivity in the posterior corpus callosum. CONCLUSIONS: These longitudinal results suggest atypical early childhood development of the corpus callosum microstructure in autism that transitions into sustained group differences in adolescence and adulthood. This pattern of results provides longitudinal evidence consistent with a growing number of published studies and hypotheses regarding abnormal brain connectivity across the life span in autism.

19.
PLoS One ; 9(9): e107398, 2014.
Article En | MEDLINE | ID: mdl-25203614

Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques.


Diffusion Tensor Imaging/methods , Macaca mulatta/physiology , White Matter/physiology , Animals , Anisotropy , Brain/physiology , Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
20.
Stereotact Funct Neurosurg ; 92(3): 182-94, 2014.
Article En | MEDLINE | ID: mdl-24943657

BACKGROUND: The efficacy and safety of intracerebral gene therapy for brain disorders like Parkinson's disease depends on the appropriate distribution of gene expression. OBJECTIVES: To assess whether the distribution of gene expression is affected by vector titer and protein type. METHODS: Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received a 30-µl inoculation of a high- or a low-titer suspension of AAV5 encoding glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP) in the right and left ventral postcommissural putamen. The inoculations were conducted using convection-enhanced delivery and intraoperative MRI (IMRI). RESULTS: IMRI confirmed targeting and infusion cloud irradiation from the catheter tip into the surrounding area. A postmortem analysis 6 weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection site that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the substantia nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many neurons of the SNpc and SNpr. CONCLUSIONS: After controlling for target and infusate volume, the intracerebral distribution of the gene product was affected by the vector titer and product biology.


Convection , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Putamen , Animals , Gene Expression Regulation , Genetic Vectors/genetics , Infusions, Intraventricular , Macaca mulatta , Male , Putamen/surgery
...