Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 23(7): 1597-1605, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29155800

RESUMEN

Epidemiological studies report strong association between mood disorders and tobacco addiction. This high comorbidity requires adequate treatment but the underlying mechanisms are unknown. We demonstrate that nicotine exposure, independent of drug withdrawal effects, increases stress sensitivity, a major risk factor in mood disorders. Nicotine and stress concur to induce long-lasting cellular adaptations within the dopamine (DA) system. This interplay is underpinned by marked remodeling of nicotinic systems, causing increased ventral tegmental area (VTA) DA neurons' activity and stress-related behaviors, such as social aversion. Blocking ß2 or α7 nicotinic acetylcholine receptors (nAChRs) prevents, respectively, the development and the expression of social stress-induced neuroadaptations; conversely, facilitating α7 nAChRs activation specifically in the VTA promotes stress-induced cellular and behavioral maladaptations. Our work unravels a complex nicotine-stress bidirectional interplay and identifies α7 nAChRs as a promising therapeutic target for stress-related psychiatric disorders.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Receptores Nicotínicos/fisiología , Animales , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Estrés Psicológico/metabolismo , Fumar Tabaco/efectos adversos , Fumar Tabaco/psicología , Área Tegmental Ventral/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos
2.
Mol Psychiatry ; 19(9): 1001-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24126929

RESUMEN

Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2(MAPK) signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GR(NesCre)). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2(MAPK) responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2(MAPK) signaling pathways as one of the core effectors of stress-related effects of GC.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Miedo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Memoria/fisiología , Receptor trkB/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Ratas Sprague-Dawley , Receptores de Glucocorticoides/genética , Estrés Psicológico/fisiopatología , Técnicas de Cultivo de Tejidos , Activador de Tejido Plasminógeno/metabolismo
3.
Transl Psychiatry ; 3: e338, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24346136

RESUMEN

Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Genes DCC/fisiología , Trastornos Mentales/genética , Corteza Prefrontal/crecimiento & desarrollo , Adolescente , Desarrollo del Adolescente/fisiología , Animales , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Masculino , Ratones , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Conducta Autodestructiva/genética , Suicidio
4.
Cell Death Differ ; 20(11): 1546-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013726

RESUMEN

In CNS, glucocorticoids (GCs) activate both GC receptor (GR) and mineralocorticoid receptor (MR), whereas GR is widely expressed, the expression of MR is restricted. However, both are present in the microglia, the resident macrophages of the brain and their activation can lead to pro- or anti-inflammatory effects. We have therefore addressed the specific functions of GR in microglia. In mice lacking GR in macrophages/microglia and in the absence of modifications in MR expression, intraparenchymal injection of lipopolysaccharide (LPS) activating Toll-like receptor 4 signaling pathway resulted in exacerbated cellular lesion, neuronal and axonal damage. Global inhibition of GR by RU486 pre-treatment revealed that microglial GR is the principal mediator preventing neuronal degeneration triggered by lipopolysaccharide (LPS) and contributes with GRs of other cell types to the protection of non-neuronal cells. In vivo and in vitro data show GR functions in microglial differentiation, proliferation and motility. Interestingly, microglial GR also abolishes the LPS-induced delayed outward rectifier currents by downregulating Kv1.3 expression known to control microglia proliferation and oxygen radical production. Analysis of GR transcriptional function revealed its powerful negative control of pro-inflammatory effectors as well as upstream inflammatory activators. Finally, we analyzed the role of GR in chronic unpredictable mild stress and aging, both known to prime or sensitize microglia in vivo. We found that microglial GR suppresses rather than mediates the deleterious effects of stress or aging on neuronal survival. Overall, the results show that microglial GR acts on several key processes limiting pro-inflammatory actions of activated microglia.


Asunto(s)
Sistema Nervioso Central/patología , Inflamación/inmunología , Microglía/inmunología , Receptores de Glucocorticoides/inmunología , Animales , Procesos de Crecimiento Celular/inmunología , Movimiento Celular/inmunología , Sistema Nervioso Central/inmunología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal
5.
Diabetologia ; 54(2): 350-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20857084

RESUMEN

AIMS/HYPOTHESIS: Prenatal exposure to excess glucocorticoids associates with low birthweight in rodents, primates and humans and its involvement in programming glucose homeostasis is suspected. Our aim was to further dissect the role of glucocorticoids on beta cell development and function in mice. METHODS: Using the model of maternal general food restriction during the last week of pregnancy, we thoroughly studied in the CD1 mouse-mothers and fetal and adult offspring--the pancreatic, metabolic and molecular consequences of maternal undernutrition associated with excess glucocorticoids. The specific involvement of the glucocorticoid receptor (GR) was studied in mutant fetuses lacking GR in pancreatic precursors or mature beta cells. RESULTS: Maternal general food restriction in the mouse is associated with decreased maternal glucose and increased corticosterone levels. Fetuses from underfed dams had increased corticosterone levels, decreased pancreatic endocrine gene expression but increased exocrine gene expression and a lower beta cell mass. The offspring of these dams had a low birthweight, permanent postnatal growth retardation and, as adults, impaired glucose tolerance, decreased beta cell mass (-50%) and massively reduced islet expression (-80%) of most of the genes involved in beta cell function (e.g. Pdx1, Sur1 [also known as Abcc8], insulin). Moreover, using mutant fetuses lacking GR in pancreatic precursors or beta cells we show that the deleterious effect of undernutrition on fetal beta cell development requires the presence of the GR in pancreatic precursor cells. CONCLUSIONS/INTERPRETATION: These results demonstrate the crucial role of excess fetal glucocorticoids and the importance of GR signalling in progenitor cells to programme beta cell mass and dysfunction.


Asunto(s)
Ingestión de Alimentos/fisiología , Glucocorticoides/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Composición Corporal/fisiología , Corticosterona/sangre , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Embarazo , Receptores de Glucocorticoides/genética
6.
Mol Psychiatry ; 15(12): 1125, 1140-51, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20368707

RESUMEN

The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GR(NesCre)), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress.


Asunto(s)
Memoria/fisiología , Receptores de Glucocorticoides/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo , Sinapsinas/metabolismo , Análisis de Varianza , Animales , Aprendizaje por Asociación/fisiología , Reacción de Prevención/fisiología , Corticosterona/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas
7.
Neurosci Lett ; 457(1): 58-60, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19429162

RESUMEN

The adrenal glucocorticoid, corticosterone, induces changes in gene expression in both neural and non-neural tissues. The rhythmic release of corticosterone has been shown in rats to be necessary for the rhythmic expression of the clock protein PERIOD2 (PER2) in select regions of the limbic forebrain. The mechanisms mediating the effects of glucocorticoids on changes in gene expression have been linked to the transcriptional activity of the low affinity glucocorticoid receptor, GR. We examined the patterns of PER2 expression in the brains of mice containing an inactivation of GR gene restricted to neural tissues (GR(NesCre) mice). We found that central deletion of the GR gene blunts the daily pattern of PER2 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and central nucleus of the amygdala (CEA) both of which make up the central extended amygdala, but not in the suprachiasmatic nucleus (SCN), basolateral amygdala (BLA) or dentate gyrus of the hippocampus (DG). These results implicate brain GR receptors in the regulation of PER2 expression in the BNSTov and CEA and are consistent with our previous findings that the rhythmic expression of PER2 in these areas is selectively sensitive to fluctuations in circulating corticosterone.


Asunto(s)
Amígdala del Cerebelo/fisiología , Relojes Biológicos/fisiología , Proteínas de Ciclo Celular/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Nucleares/fisiología , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/fisiología , Animales , Ratones , Proteínas Circadianas Period
8.
Physiol Genomics ; 37(2): 140-6, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19141541

RESUMEN

The tet-inducible system has been widely used to achieve conditional gene expression in genetically modified mice. To alleviate the frequent difficulties associated with recovery of relevant transgenic founders, we tested whether a controlled strategy of transgenesis would support reliable cell-specific, doxycycline (Dox)-controlled transgene expression in vivo. Taking advantage of the potent hypoxanthine-aminopterin-thymidine selection strategy and an embryonic stem (ES) cell line supporting efficient germ-line transmission, we used hypoxanthine phosphoribosyltransferase (HPRT) targeting to insert a single copy tet-inducible construct designed to allow both glucocorticoid receptor (GR) and beta-galactosidase (beta-Gal) expression. Conditional, Dox-dependent GR and beta-Gal expression was evidenced in targeted ES cells. Breeding ES-derived single copy transgenic mice with mice bearing appropriate tet transactivators resulted in beta-Gal expression both qualitatively and quantitatively similar to that observed in mice with random integration of the same construct. Interestingly, GR expression in mice was dependent on transgene orientation in the HPRT locus while embryonic stem cell expression was not. Thus, a conditional construct inserted in single copy and in predetermined orientation at the HPRT locus demonstrated a Dox-dependent gene expression phenotype in adult mice suggesting that controlled insertion of tet-inducible constructs at the HPRT locus can provide an efficient alternative strategy to reproducibly generate animal models with tetracycline-induced transgene expression.


Asunto(s)
Células Madre Embrionarias/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Receptores de Glucocorticoides/metabolismo , Tetraciclina/farmacología , Animales , Proteínas Bacterianas/genética , Western Blotting , Proteínas Portadoras/genética , Línea Celular , Doxiciclina/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Vectores Genéticos/genética , Humanos , Operón Lac/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Miocardio/metabolismo , Receptores de Glucocorticoides/genética , Coloración y Etiquetado , Transfección , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
9.
Genesis ; 44(10): 454-64, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16981198

RESUMEN

cAMP response element binding protein (CREB) and the related factors CREM (cAMP response element modulator) and ATF1 (activation transcription factor 1) are bZIP-domain-containing transcription factors activated through cAMP and other signaling pathways. The disruption of CREB function in developing and mature neurons affects their development and survival when associated with loss of CREM. Since dopaminergic (DA) neurons are affected in several neurological diseases, we generated CREB conditional mutants in DA neurons by using a newly generated transgenic Cre line targeting the dopaminergic system (DATCre). Here we report the generation and analysis of mutant mice lacking CREB in DA neurons (CREB(DATCre) mutants). During adulthood, lack of CREB leads to a partial loss of DA neurons. Since CREM is upregulated in absence of CREB, we have introduced this mutation in a CREM-/- genetic background to assess a compensatory role of CREM. Additional inactivation of CREM does not lead to a more severe phenotype.


Asunto(s)
Supervivencia Celular , Modulador del Elemento de Respuesta al AMP Cíclico/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Animales , AMP Cíclico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Técnicas para Inmunoenzimas , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Transducción de Señal , Transcripción Genética , Activación Transcripcional , Regulación hacia Arriba
10.
Diabetologia ; 49(12): 2939-47, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17001468

RESUMEN

AIMS/HYPOTHESIS: Beta cell development is sensitive to glucocorticoid levels. Although direct effects of glucocorticoids on pancreatic precursors have been shown to control beta cell mass expansion, indirect effects of these hormones on pancreatic development remain unexplored. This issue was addressed in mice lacking the glucocorticoid receptor (GR) in the whole organism. MATERIALS AND METHODS: The pancreatic phenotype of GR(null/null) mice was studied at fetal ages (embryonic day [E]) E15.5 and E18 by immunohistochemistry and beta cell fraction measurements. To distinguish between direct and indirect effects, mutant E15.5 fetal pancreata were grafted under the kidney capsule of immunodeficient mice and analysed after 1 week. RESULTS: E18 GR(null/null) fetuses had smaller digestive tracts and tiny pancreata. Massive pancreatic disorganisation and apoptosis were observed despite the presence of all cell types. E15.5 GR(null/null) mutants were indistinguishable from wild-type regarding pancreatic size, tissue structure and organisation, beta cell fraction and production of exocrine transcription factor Ptf1a, neurogenin 3 and Pdx-1. Grafting E15.5 GR(null/null) pancreata into a GR-expressing environment rescued the increased apoptosis and mature islets were observed, suggesting that GR(null/null) pancreatic cell death can be attributed to indirect effects of glucocorticoids on this tissue. Heterozygous GR(+/null) mutants with reduced GR numbers showed no apoptosis but increased beta cell fraction at E18 and the adult age, strengthening the importance of an accurate GR dosage on beta cell mass expansion. CONCLUSIONS/INTERPRETATION: Our results provide evidence for GR involvement in pancreatic tissue organisation and survival through indirect effects. GR does not appear necessary for early phases, but its accurate dosage is critical to modulate beta cell mass expansion at later fetal stages, presumably through direct effects.


Asunto(s)
Glucocorticoides/farmacología , Páncreas/crecimiento & desarrollo , Receptores de Glucocorticoides/genética , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , División Celular , Desarrollo Embrionario , Genotipo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Páncreas/efectos de los fármacos , Páncreas/embriología , Trasplante de Páncreas , Reacción en Cadena de la Polimerasa , Receptores de Glucocorticoides/deficiencia , Transducción de Señal/fisiología , Ensayo de Capsula Subrrenal
11.
Neuroscience ; 137(3): 915-24, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16326019

RESUMEN

Several findings suggest that glucocorticoid hormones influence the propensity of an individual to develop cocaine abuse. These hormones activate two related transcription factors, the glucocorticoid receptor and the mineralocorticoid receptor. We have shown previously that mice carrying a mutation of the glucocorticoid receptor gene specifically in neural cells, glucocorticoid receptor knock-out in the brain, show a dramatic decrease in cocaine-induced self-administration and no behavioral sensitization to this drug, two experimental procedures considered relevant models of addiction. Here, we investigated in glucocorticoid receptor knock-out in the brain mice the consequences of this mutation at the level of the expression of neuropeptide, dopamine receptor and glutamate receptor subunit mRNAs. We quantified mRNA levels in the cortex, striatum and accumbens under basal conditions and following acute or repeated cocaine treatments. Our results show that, under basal conditions, neuropeptide (substance P, dynorphin) and dopamine receptor (D1, D2) mRNAs were decreased in glucocorticoid receptor knock-out in the brain mice in the dorsal striatum but not in the accumbens. However, cocaine-induced changes in the levels of these mRNAs were not modified in glucocorticoid receptor knock-out in the brain mice. In contrast, mutant mice showed altered response in mRNA levels of N-methyl-D-aspartate, GLUR5 and GLUR6 glutamate receptor subunits as well as of enkephalin following cocaine administration. These modifications may be associated to decrease of behavioral effects of cocaine observed in glucocorticoid receptor knock-out in the brain mice.


Asunto(s)
Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica , Receptores de Glucocorticoides/metabolismo , Animales , Dinorfinas/biosíntesis , Encefalinas/biosíntesis , Hibridación in Situ , Ácido Kaínico/metabolismo , Masculino , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Ácido Kaínico/biosíntesis , Receptores de Ácido Kaínico/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Sustancia P/biosíntesis , Transmisión Sináptica/efectos de los fármacos , Receptor de Ácido Kaínico GluK2
12.
Proc Natl Acad Sci U S A ; 100(13): 7953-8, 2003 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-12810951

RESUMEN

Mifepristone (RU486), which binds with high affinity to both progesterone and glucocorticosteroid receptors (PR and GR), is well known for its use in the termination of unwanted pregnancy, but other activities including neuroprotection have been suggested. Cerebellar organotypic cultures from 3 to 7 postnatal day rat (P3-P7) were studied to examine the neuroprotective potential of RU486. In such cultures, Purkinje cells enter a process of apoptosis with a maximum at P3. This study shows that RU486 (20 microM) can protect Purkinje cells from this apoptotic process. The neuroprotective effect did involve neither PR nor GR, because it could not be mimicked or inhibited by other ligands of these receptors, and because it still took place in PR mutant (PR-KO) mice and in brain-specific GR mutant mice (GRNes/Cre). Potent antioxidant agents did not prevent Purkinje cells from this developmental cell death. The neuroprotective effect of RU486 could also be observed in pathological Purkinje cell death. Indeed, this steroid is able to prevent Purkinje cells from death in organotypic cultures of cerebellar slices from Purkinje cell degeneration (pcd) mutant mice, a murine model of hereditary neurodegenerative ataxia. In P0 cerebellar slices treated with RU486 for 6 days and further kept in culture up to 21 days, the synthetic steroid increased by 16.2-fold the survival of pcd/pcd Purkinje cells. Our results show that RU486 may act through a new mechanism, not yet elucidated, to protect Purkinje cells from death.


Asunto(s)
Cerebelo/patología , Antagonistas de Hormonas/farmacología , Mifepristona/farmacología , Células de Purkinje/efectos de los fármacos , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Encéfalo/patología , Muerte Celular/efectos de los fármacos , División Celular , Supervivencia Celular , Cerebelo/metabolismo , Corticosterona/farmacología , Ligandos , Ratones , Ratones Noqueados , Ratones Mutantes , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
14.
EMBO J ; 20(24): 7128-36, 2001 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-11742989

RESUMEN

The circadian timing system in mammals is composed of a master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus and slave clocks in most peripheral cell types. The phase of peripheral clocks can be completely uncoupled from the SCN pacemaker by restricted feeding. Thus, feeding time, while not affecting the phase of the SCN pacemaker, is a dominant Zeitgeber for peripheral circadian oscillators. Here we show that the phase resetting in peripheral clocks of nocturnal mice is slow when feeding time is changed from night to day and rapid when switched back from day to night. Unexpectedly, the inertia in daytime feeding-induced phase resetting of circadian gene expression in liver and kidney is not an intrinsic property of peripheral oscillators, but is caused by glucocorticoid signaling. Thus, glucocorticoid hormones inhibit the uncoupling of peripheral and central circadian oscillators by altered feeding time.


Asunto(s)
Ritmo Circadiano , Corticosterona/fisiología , Alimentos , Núcleo Supraquiasmático/fisiología , Adrenalectomía , Animales , Secuencia de Bases , Cartilla de ADN , Regulación de la Expresión Génica/fisiología , Hibridación in Situ , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/fisiología
15.
Physiol Behav ; 73(5): 811-25, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11566214

RESUMEN

Impaired corticosteroid receptor signaling is a key mechanism in the pathogenesis of stress-related psychiatric disorders such as depression and anxiety. Since in vivo expression and functional studies of corticosteroid receptors are not feasible in the human central nervous system, such analyses have to be done in animal models. Transgenic mice with mutations of corticosteroid receptors are promising tools, which allow us to investigate the role of these proteins in the pathogenesis of symptoms characteristic for depression and anxiety. This review summarizes the neuroendocrinological and behavioral findings that have been obtained in six different mouse strains with specific mutations that influence the expression or the function of the glucocorticoid or the mineralocorticoid receptor (MR). The analyses of these mice helped to define molecular concepts of how corticosteroid receptors regulate the activity of the hypothalamic-pituitary-adrenal (HPA) system. Furthermore, some of these mutant mice exhibited characteristic alterations in behavioral tests for anxiety and despair. However, so far, none of the mouse strains described here can be viewed as an animal model of a specific psychiatric disease defined by common diagnostic criteria. Using high throughput technologies for the identification of genes regulated by glucocorticoid receptor (GR) and MR in brain areas responsible for specific symptoms of stress-related disorders will yield potential new drug targets for the treatment of depression and anxiety.


Asunto(s)
Ansiedad/genética , Depresión/genética , Modelos Animales de Enfermedad , Marcación de Gen , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Animales , Genética Conductual , Humanos , Ratones , Ratones Noqueados/genética , Ratones Mutantes Neurológicos/genética , Ratones Transgénicos/genética
16.
J Neurosci ; 21(15): 5520-7, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-11466423

RESUMEN

The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Potenciación a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/metabolismo , Receptores de la Hormona Hipofisaria/deficiencia , Receptores de la Hormona Hipofisaria/metabolismo , Animales , Reacción de Prevención/fisiología , Señales (Psicología) , Electrochoque , Técnicas In Vitro , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Prosencéfalo/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/genética , Transducción de Señal/fisiología , Conducta Social
17.
Biol Chem ; 381(9-10): 961-4, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11076028

RESUMEN

Glucocorticoids (GC) are involved in a plethora of physiological processes that range from the regulation of the stress response and the control of the immune system to modulation of behavior. Most GC effects are mediated by the glucocorticoid receptor (GR) via activation and repression of gene expression. Whereas in most cases activation requires DNA binding of the receptor, repression is usually mediated by protein-protein interaction with other transcription factors. To decipher the molecular mode of action of GR, mice were generated by gene targeting carrying a point mutation in one of the dimerization domains, thus abrogating DNA binding by GR. Analysis of these mice demonstrated that thymocyte apoptosis and stress erythropoiesis require the DNA binding-dependent function of GR, whereas lung development and the anti-inflammatory activity of GR are mediated by protein-protein interaction. Furthermore, to study the role of GC in the brain, mice were generated specifically lacking GR function in the nervous system. Using these mice we demonstrated that GR is essential for the regulation of the HPA-axis and the stress response, as well as for the control of emotional behavior. Taken together, gene targeting using the Cre/loxP system proved to be highly valuable for the analysis of both molecular mechanism and tissue-specific functions of the GR.


Asunto(s)
Glucocorticoides/genética , Glucocorticoides/fisiología , Integrasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Virales , Animales , Expresión Génica/fisiología , Humanos , Ratones , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Recombinación Genética
18.
Science ; 289(5488): 2344-7, 2000 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-11009419

RESUMEN

In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Unión al ADN , Dexametasona/farmacología , Regulación de la Expresión Génica , Transducción de Señal , Animales , Proteínas de Ciclo Celular , Línea Celular , Dexametasona/análogos & derivados , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos , Mutación , Miocardio/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
EMBO Rep ; 1(5): 447-51, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11258486

RESUMEN

To dissect the effects of corticosteroids mediated by the mineralocorticoid (MR) and the glucocorticoid receptor (GR) in the central nervous system, we compared MR-/- mice, whose salt loss syndrome was corrected by exogenous NaCI administration, with GR-/- mice having a brain-specific disruption of the GR gene generated by the Cre/loxP-recombination system. Neuropathological analyses revealed a decreased density of granule cells in the hippocampus of adult MR-/- mice but not in mice with disruption of GR. Furthermore, adult MR-/- mice exhibited a significant reduction of granule cell neurogenesis to 65% of control levels, possibly mediated by GR due to elevated corticosterone plasma levels. Neurogenesis was unaltered in adult mice with disruption of GR. Thus, we could attribute long-term trophic effects of adrenal steroids on dentate granule cells to MR. These MR-related alterations may participate in the pathogenesis of hippocampal changes observed in ageing, chronic stress and affective disorders.


Asunto(s)
Hipocampo/citología , Hipocampo/metabolismo , Mutagénesis , Neuronas/fisiología , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/fisiología , Animales , Corticosterona/sangre , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA