Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(7): E1234-E1242, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137879

RESUMEN

Medium spiny neurons (MSNs) are a key population in the basal ganglia network, and their degeneration causes a severe neurodegenerative disorder, Huntington's disease. Understanding how ventral neuroepithelial progenitors differentiate into MSNs is critical for regenerative medicine to develop specific differentiation protocols using human pluripotent stem cells. Studies performed in murine models have identified some transcriptional determinants, including GS Homeobox 2 (Gsx2) and Early B-cell factor 1 (Ebf1). Here, we have generated human embryonic stem (hES) cell lines inducible for these transcription factors, with the aims of (i) studying their biological role in human neural progenitors and (ii) incorporating TF conditional expression in a developmental-based protocol for generating MSNs from hES cells. Using this approach, we found that Gsx2 delays cell-cycle exit and reduces Pax6 expression, whereas Ebf1 promotes neuronal differentiation. Moreover, we found that Gsx2 and Ebf1 combined overexpression in hES cells achieves high yields of MSNs, expressing Darpp32 and Ctip2, in vitro as well in vivo after transplantation. We show that hES-derived striatal progenitors can be transplanted in animal models and can differentiate and integrate into the host, extending fibers over a long distance.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Animales , Ciclo Celular/genética , Línea Celular , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/trasplante , Humanos , Ratones Desnudos , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trasplante de Células Madre/métodos , Telencéfalo/citología , Transactivadores/metabolismo , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Front Cell Neurosci ; 10: 190, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547177

RESUMEN

One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.

3.
Autophagy ; 10(10): 1827-43, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25136804

RESUMEN

The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-ß (Aß) peptide accumulation in vacuoles and cell death. Aß, in turn, has been found to affect autophagy. Thus, Aß might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aß1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Multimerización de Proteína , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Beclina-1 , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Corteza Cerebral/patología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA