Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 29(2): 293-305, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974533

RESUMEN

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.


Asunto(s)
Enfermedad de Huntington , Péptidos , Animales , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo
2.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29739811

RESUMEN

In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT-induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1-lacking cells are hypersensitive to CPT specifically and show less reversed forks in the presence of CPT The lack of Mre11 nuclease activity restores wild-type levels of reversed forks in CPT-treated tel1Δ cells without affecting fork reversal in wild-type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild-type, tel1Δ, and mre11 nuclease-deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT Altogether, our data indicate that Tel1 counteracts Mre11 nucleolytic activity at replication forks that undergo Mrc1-mediated reversal in the presence of CPT.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Camptotecina/farmacología , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas/genética , Humanos , Mutación , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 45(11): 6530-6545, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28472517

RESUMEN

Eukaryotic cells preserve genome integrity upon DNA damage by activating a signaling network that promotes DNA repair and controls cell cycle progression. One of the most severe DNA damage is the DNA double-strand break (DSB), whose 5΄ ends can be nucleolitically resected by multiple nucleases to create 3΄-ended single-stranded DNA tails that trigger DSB repair by homologous recombination. Here, we identify the Saccharomyces cerevisiae RNA binding protein Npl3 as a new player in DSB resection. Npl3 is related to both the metazoan serine-arginine-rich and the heterogeneous nuclear ribonucleo-proteins. NPL3 deletion impairs the generation of long ssDNA tails at the DSB ends, whereas it does not exacerbate the resection defect of exo1Δ cells. Furthermore, either the lack of Npl3 or the inactivation of its RNA-binding domains causes decrease of the exonuclease Exo1 protein levels as well as generation of unusual and extended EXO1 RNA species. These findings, together with the observation that EXO1 overexpression partially suppresses the resection defect of npl3Δ cells, indicate that Npl3 participates in DSB resection by promoting the proper biogenesis of EXO1 mRNA.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Exodesoxirribonucleasas/genética , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Inducción Enzimática , Epistasis Genética , Exodesoxirribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 16(2): 221-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527408

RESUMEN

Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability.


Asunto(s)
ADN de Cadena Simple/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell Oncol ; 1(1): e29901, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27308311

RESUMEN

Telomeres are nucleoprotein complexes that protect the natural ends of chromosomes from fusion and degradation and prevent them eliciting a checkpoint response. This protective function, which is called telomere capping, is largely mediated by telomere-binding proteins that suppress checkpoint activation and DNA repair activities. Telomere dysfunction through progressive shortening or removal of capping proteins leads to a checkpoint-mediated block of cell proliferation, which acts as a cancer-suppressor mechanism. However, genetic alterations that inactivate the checkpoint can lead to further telomere erosion and increased genomic instability that, coupled with the activation of mechanisms to restabilize telomeres, can drive the oncogenic process.

6.
EMBO J ; 33(3): 198-216, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24357557

RESUMEN

Tel1/ATM and Mec1/ATR checkpoint kinases are activated by DNA double-strand breaks (DSBs). Mec1/ATR recruitment to DSBs requires the formation of RPA-coated single-stranded DNA (ssDNA), which arises from 5'-3' nucleolytic degradation (resection) of DNA ends. Here, we show that Saccharomyces cerevisiae Mec1 regulates resection of the DSB ends. The lack of Mec1 accelerates resection and reduces the loading to DSBs of the checkpoint protein Rad9, which is known to inhibit ssDNA generation. Extensive resection is instead inhibited by the Mec1-ad mutant variant that increases the recruitment near the DSB of Rad9, which in turn blocks DSB resection by both Rad53-dependent and Rad53-independent mechanisms. The mec1-ad resection defect leads to prolonged persistence at DSBs of the MRX complex that causes unscheduled Tel1 activation, which in turn impairs checkpoint switch off. Thus, Mec1 regulates the generation of ssDNA at DSBs, and this control is important to coordinate Mec1 and Tel1 signaling activities at these breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Cadena Simple , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transducción de Señal , Adaptación Biológica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inmunoprecipitación de Cromatina , ADN de Hongos/genética , Proteínas de Unión al ADN , Activación Enzimática , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genes cdc , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Mol Biol ; 425(23): 4756-66, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23603016

RESUMEN

The eukaryotic cell cycle comprises a series of events, whose ordering and correct progression depends on the oscillating activity of cyclin-dependent kinases (Cdks), which safeguard timely duplication and segregation of the genome. Cell division is intimately connected to an evolutionarily conserved DNA damage response (DDR), which involves DNA repair pathways that reverse DNA lesions, as well as checkpoint pathways that inhibit cell cycle progression while repair occurs. There is increasing evidence that Cdks are involved in the DDR, in particular in DNA repair by homologous recombination and in activation of the checkpoint response. However, Cdks have to be carefully regulated, because even an excess of their activity can affect genome stability. In this review, we consider the physiological role of Cdks in the DDR.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Reparación del ADN , Eucariontes/genética , Eucariontes/fisiología , Regulación de la Expresión Génica
8.
Mol Cell Biol ; 32(24): 4971-85, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23045388

RESUMEN

The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G(1) and mitosis. In fact, delaying either the G(1)/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Replicación del ADN , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Genes Fúngicos , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS Genet ; 7(8): e1002263, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901114

RESUMEN

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5'-3' nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Fase G1 , Recombinación Genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 30(1): 131-45, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19884341

RESUMEN

Replication fork stalling caused by deoxynucleotide depletion triggers Rad53 phosphorylation and subsequent checkpoint activation, which in turn play a crucial role in maintaining functional DNA replication forks. How cells regulate checkpoint deactivation after inhibition of DNA replication is poorly understood. Here, we show that the budding yeast protein phosphatase Glc7/protein phosphatase 1 (PP1) promotes disappearance of phosphorylated Rad53 and recovery from replication fork stalling caused by the deoxynucleoside triphosphate (dNTP) synthesis inhibitor hydroxyurea (HU). Glc7 is also required for recovery from a double-strand break-induced checkpoint, while it is dispensable for checkpoint inactivation during methylmethane sulfonate exposure, which instead requires the protein phosphatases Pph3, Ptc2, and Ptc3. Furthermore, Glc7 counteracts in vivo histone H2A phosphorylation on serine 129 (gamma H2A) and dephosphorylates gamma H2A in vitro. Finally, the replication recovery defects of HU-treated glc7 mutants are partially rescued by Rad53 inactivation or lack of gamma H2A formation, and the latter also counteracts hyperphosphorylated Rad53 accumulation. We therefore propose that Glc7 activity promotes recovery from replication fork stalling caused by dNTP depletion and that gamma H2A dephosphorylation is a critical Glc7 function in this process.


Asunto(s)
Replicación del ADN , ADN de Hongos/metabolismo , Histonas/metabolismo , Proteína Fosfatasa 1/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Hidroxiurea/farmacología , Mutación , Fosforilación , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...