Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Article En | MEDLINE | ID: mdl-35458052

The paper discusses the formation of Ta2O5 pillars with Ni tips during thin porous anodic alumina through-mask anodization on Si/SiO2 substrates. The tantalum nanopillars were formed through porous masks in electrolytes of phosphoric and oxalic acid. The Ni tips on the Ta2O5 pillars were formed via vacuum evaporation through the porous mask. The morphology, structure, and magnetic properties at 4.2 and 300 K of the Ta2O5 nanopillars with Ni tips have been studied using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The main mechanism of the formation of the Ta2O5 pillars during through-mask anodization was revealed. The superparamagnetic behavior of the magnetic hysteresis loop of the Ta2O5 nanopillars with Ni tips was observed. Such nanostructures can be used to develop novel functional nanomaterials for magnetic, electronic, biomedical, and optical nano-scale devices.

2.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Article En | MEDLINE | ID: mdl-32033483

The possibility of the formation of high entropy single-phase perovskites using solid-state sintering was investigated. The BaO-SrO-CaO-MgO-PbO-TiO2, BaO-SrO-CaO-MgO-PbO-Fe2O3 and Na2O-K2O-CaO-La2O3-Ce2O3-TiO2 oxide systems were investigated. The optimal synthesis temperature is found between 1150 and 1400 °C, at which the microcrystalline single phase with perovskite structure was produced. The morphology, chemical composition, crystal parameters and dielectric properties were studied and compared with that of pure BaTiO3. According to the EDX data, the single-phase product has a formula of Na0.30K0.07Ca0.24La0.18Ce0.21TiO3 and a cubic structure.

3.
Nanomaterials (Basel) ; 10(1)2020 Jan 19.
Article En | MEDLINE | ID: mdl-31963901

Inorganic-based nanoelements such as nanoparticles (nanodots), nanopillars and nanowires, which have at least one dimension of 100 nm or less, have been extensively developed for biomedical applications. Furthermore, their properties can be varied by controlling such parameters as element shape, size, surface functionalization, and mutual interactions. In this study, Ni-alumina nanocomposite material was synthesized by the dc-Ni electrodeposition into a porous anodic alumina template (PAAT). The structural, morphological, and corrosion properties were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical techniques (linear sweep voltammetry). Template technology was used to obtain Ni nanopillars (NiNPs) in the PAAT nanocomposite. Low corrosion current densities (order of 0.5 µA/cm2) were indicators of this nanocomposite adequate corrosion resistance in artificial physiological solution (0.9% NaCl). A porous anodic alumina template is barely exposed to corrosion and performs protective functions in the composite. The results may be useful for the development of new nanocomposite materials technologies for a variety of biomedical applications including catalysis and nanoelectrodes for sensing and fuel cells. They are also applicable for various therapeutic purposes including targeting, diagnosis, magnetic hyperthermia, and drug delivery. Therefore, it is an ambitious task to research the corrosion resistance of these magnetic nanostructures in simulated body fluid.

4.
Nanomaterials (Basel) ; 9(4)2019 Mar 31.
Article En | MEDLINE | ID: mdl-30935156

Magnetic Fe3O4 nanoparticles (NPs) and their surface modification with therapeutic substances are of great interest, especially drug delivery for cancer therapy, including boron-neutron capture therapy (BNCT). In this paper, we present the results of boron-rich compound (carborane borate) attachment to previously aminated by (3-aminopropyl)-trimethoxysilane (APTMS) iron oxide NPs. Fourier transform infrared spectroscopy with Attenuated total reflectance accessory (ATR-FTIR) and energy-dispersive X-ray analysis confirmed the change of the element content of NPs after modification and formation of new bonds between Fe3O4 NPs and the attached molecules. Transmission (TEM) and scanning electron microscopy (SEM) showed Fe3O4 NPs' average size of 18.9 nm. Phase parameters were studied by powder X-ray diffraction (XRD), and the magnetic behavior of Fe3O4 NPs was elucidated by Mössbauer spectroscopy. The colloidal and chemical stability of NPs was studied using simulated body fluid (phosphate buffer-PBS). Modified NPs have shown excellent stability in PBS (pH = 7.4), characterized by XRD, Mössbauer spectroscopy, and dynamic light scattering (DLS). Biocompatibility was evaluated in-vitro using cultured mouse embryonic fibroblasts (MEFs). The results show us an increasing of IC50 from 0.110 mg/mL for Fe3O4 NPs to 0.405 mg/mL for Fe3O4-Carborane NPs. The obtained data confirm the biocompatibility and stability of synthesized NPs and the potential to use them in BNCT.

...