Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1679, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396035

RESUMEN

Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau's physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament's ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Enfermedad de Alzheimer/metabolismo , Citoesqueleto/metabolismo , Fosforilación
2.
Brain Res Bull ; 194: 13-22, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626968

RESUMEN

The unique morphology of neurons consists of a long axon and a highly variable arbour of dendritic processes, which assort neuronal cells into the main classes. The dendritic tree serves as the main domain for receiving synaptic input. Therefore, to maintain the structure and to be able to plastically change according to the incoming stimuli, molecules and organelles need to be readily available. This is achieved mainly via bi-directional transport of cargo along the microtubule lattices. Analysis of dendritic transport is lagging behind the investigation of axonal transport. Moreover, addressing transport mechanisms in tissue environment is very challenging and, therefore, rare. We employed high-speed volumetric lattice light-sheet microscopy and single particle tracking of truncated KIF1A motor protein lacking the cargo-binding domain. We focused our analysis on dendritic processes of CA1 pyramidal neurons in cultured hippocampal tissue. Analysis of individual trajectories revealed detailed information about stalling and high variability in movement and speed, and biased directionality of KIF1A. Furthermore, we could also observe KIF1A shortly entering into dendritic spines. We provide a workflow to analyse variations in the speed and direction of motor protein movement in dendrites that are either intrinsic properties of the motor domain or depend on the structure and modification of the microtubule trails.


Asunto(s)
Espinas Dendríticas , Cinesinas , Microscopía , Ratones , Axones/metabolismo , Dendritas , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Cinesinas/metabolismo , Cinesinas/fisiología , Microscopía/métodos , Neuronas/metabolismo , Animales
3.
Brain Res Bull ; 190: 234-243, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244582

RESUMEN

Microtubules are essential for the development of neurons and the regulation of their structural plasticity. Microtubules also provide the structural basis for the long-distance transport of cargo. Various factors influence the organization and dynamics of neuronal microtubules, and disturbance of microtubule regulation is thought to play a central role in neurodegenerative diseases. However, imaging and quantitative assessment of the microtubule organization in the densely packed neuronal processes is challenging. The development of super-resolution techniques combined with the use of nanobodies offers new possibilities to visualize microtubules in neurites in high resolution. In combination with recently developed computational analysis tools, this allows automated quantification of neuronal microtubule organization with high precision. Here we have implemented three-dimensional DNA-PAINT (Point Accumulation in Nanoscale Topography), a single-molecule localization microscopy (SMLM) technique, which allows us to acquire 3D arrays of the microtubule lattice in axons of model neurons (neuronally differentiated PC12 cells) and dendrites of primary neurons. For the quantitative analysis of the microtubule organization, we used the open-source software package SMLM image filament extractor (SIFNE). We found that treatment with nanomolar concentrations of the microtubule-targeting drug epothilone D (EpoD) increased microtubule density in axon-like processes of model neurons and shifted the microtubule length distribution to shorter ones, with a mean microtubule length of 2.39 µm (without EpoD) and 1.98 µm (with EpoD). We also observed a significant decrease in microtubule straightness after EpoD treatment. The changes in microtubule density were consistent with live-cell imaging measurements of ensemble microtubule dynamics using a previously established Fluorescence Decay After Photoactivation (FDAP) assay. For comparison, we determined the organization of the microtubule array in dendrites of primary hippocampal neurons. We observed that dendritic microtubules have a very similar length distribution and straightness compared to microtubules in axon-like processes of a neuronal cell line. Our data show that super-resolution imaging of microtubules followed by algorithm-based image analysis represents a powerful tool to quantitatively assess changes in microtubule organization in neuronal processes, useful to determine the effect of microtubule-modulating conditions. We also provide evidence that the approach is robust and can be applied to neuronal cell lines or primary neurons, both after incorporation of labeled tubulin and by anti-tubulin antibody staining.


Asunto(s)
Axones , Microtúbulos , Ratas , Animales , Microtúbulos/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Células PC12
4.
Mol Psychiatry ; 27(7): 3010-3023, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393558

RESUMEN

The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator. Here we report that the proportion of tau that is proteolytically cleaved at the caspase-3 site (TauC3) doubles in the hippocampus of senescent mice. TauC3 is also elevated in AD patients. Through quantitative live-cell imaging, we show that TauC3 has a drastically reduced dynamics of its microtubule interaction. Single-molecule tracking of tau confirmed that TauC3 has a longer residence time on axonal microtubules. The reduced dynamics of the TauC3-microtubule interaction correlated with a decreased transport of mitochondria, a reduced processivity of APP-vesicle transport and an induction of region-specific dendritic atrophy in CA1 neurons of the hippocampus. The microtubule-targeting drug Epothilone D normalized the interaction of TauC3 with microtubules and modulated the transport of APP-vesicles dependent on the presence of overexpressed human tau. The results indicate a novel toxic gain of function, in which a post-translational modification of tau changes the dynamics of the tau-microtubule interaction and thus leads to axonal transport defects and neuronal degeneration. The data also introduce microtubule-targeting drugs as pharmacological modifiers of the tau-microtubule interaction with the potential to restore the physiological interaction of pathologically altered tau with microtubules.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Animales , Transporte Axonal , Caspasas/metabolismo , Mutación con Ganancia de Función , Humanos , Ratones , Microtúbulos/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo
5.
Methods Mol Biol ; 2428: 243-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171484

RESUMEN

Stress granules (SGs) are cytosolic, nonmembranous RNA-protein (RNP) complexes that form in the cytosol of many cells under various stress conditions and can integrate responses to various stressors. Although physiological SG formation appears to be an adaptive and survival-promoting mechanism, inappropriate formation or chronic persistence of SGs has been linked to aging and various neurodegenerative diseases. The quantitative monitoring of the dynamics of SG components in living nerve cells can therefore be an important tool for identifying conditions that disrupt SG function and lead to disease-related attacks in the cells. Here, we describe a method for the quantitative determination of the distribution and shuttling dynamics of components of SGs in living model neurons by fluorescence decay after photoactivation (FDAP) measurements using a standard confocal laser scanning microscope. The method includes lipofection of photoactivatable green fluorescent protein (paGFP) fused to an SG protein of interest in a neural cell line, differentiation of the cells into a neuronal phenotype, focal activation using a blue diode (405 nm), and recording of decay curves with a 488 nm laser line. By modeling the decay measurements with FDAP functions, the approach enables estimating the residence time of the SG protein of interest, determining the proportion of the respective component in SGs, and the detection of possible changes after experimental manipulation.


Asunto(s)
Gránulos Citoplasmáticos , Gránulos de Estrés , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , ARN Helicasas/metabolismo , Estrés Fisiológico/fisiología
6.
Front Neurol ; 11: 590059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193056

RESUMEN

Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients. While microtubules are the dominant interaction partners of tau under physiological conditions, tau has many additional interaction partners that can contribute to its physiological and pathological role. In particular, the amino-terminal non-microtubule binding domain (N-terminal projection region, NTR) of tau interacts with many partners that are involved in membrane organization. The NTR contains intrinsically disordered regions (IDRs) that show a strong evolutionary increase in the disorder and may have been the basis for the development of new, tau-specific interactions. In this review we discuss the functional organization of the tau protein and the special features of the tau non-microtubule binding region also in the connection with the results of Tau KO models. We consider possible physiological and pathological functions of tau's non-microtubule interactions, which could indicate that interactions mediated by tau's NTR and regulated by far-reaching functional interactions of the PRR and the extreme C-terminus of tau contribute to the pathological processes.

7.
Front Microbiol ; 11: 38, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32047490

RESUMEN

Lam proteins transport sterols between the membranes of different cellular compartments. In Saccharomyces cerevisiae, the LAM gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of LAM gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear. Here, we surveyed the phenotypes of double and quadruple deletants of paralogous LAM2(YSP2)/LAM4 and LAM1(YSP1)/LAM3(SIP3) genes that encode proteins localized in the junctions of the plasma membrane and endoplasmic reticulum. The quadruple deletant showed increased sterol content and a strong decrease in ethanol, heat shock and high osmolarity resistance. Surprisingly, the quadruple deletant and LAM2/LAM4 double deletion strain showed increased tolerance to the azole antifungals clotrimazole and miconazole. This effect was not associated with an increased rate of ABC-transporter substrate efflux. Possibly, increased sterol pool in the LAM deletion strains postpones the effect of azoles on cell growth. Alternatively, LAM deletions might alleviate the toxic effect of sterols as Lam proteins can transport toxic sterol biosynthesis intermediates into membrane compartments that are sensitive to these compounds. Our findings reveal novel biological roles of LAM genes in stress tolerance and suggest that mutations in these genes may confer upregulation of a mechanism that provides resistance to azole antifungals in pathogenic fungi.

8.
Front Aging Neurosci ; 11: 256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31619983

RESUMEN

Tau is a neuronal microtubule-associated protein (MAP) that is involved in the regulation of axonal microtubule assembly. However, as a protein with intrinsically disordered regions (IDRs), tau also interacts with many other partners in addition to microtubules. Phosphorylation at selected sites modulates tau's various intracellular interactions and regulates the properties of IDRs. In Alzheimer's disease (AD) and other tauopathies, tau exhibits pathologically increased phosphorylation (hyperphosphorylation) at selected sites and aggregates into neurofibrillary tangles (NFTs). By bioinformatics means, we tested the hypothesis that the sequence of tau has changed during the vertebrate evolution in a way that novel interactions developed and also the phosphorylation pattern was affected, which made tau prone to the development of tauopathies. We report that distinct regions of tau show functional specialization in their molecular interactions. We found that tau's amino-terminal region, which is involved in biological processes related to "membrane organization" and "regulation of apoptosis," exhibited a strong evolutionary increase in protein disorder providing the basis for the development of novel interactions. We observed that the predicted phosphorylation sites have changed during evolution in a region-specific manner, and in some cases the overall number of phosphorylation sites increased owing to the formation of clusters of phosphorylatable residues. In contrast, disease-specific hyperphosphorylated sites remained highly conserved. The data indicate that novel, non-microtubule related tau interactions developed during evolution and suggest that the biological processes, which are mediated by these interactions, are of pathological relevance. Furthermore, the data indicate that predicted phosphorylation sites in some regions of tau, including a cluster of phosphorylatable residues in the alternatively spliced exon 2, have changed during evolution. In view of the "antagonistic pleiotropy hypothesis" it may be worth to take disease-associated phosphosites with low evolutionary conservation as relevant biomarkers into consideration.

9.
Biol Chem ; 400(9): 1163-1179, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31116700

RESUMEN

The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton. We show that the number of orthologs of tubulin structure proteins, MT-binding proteins and tubulin-sequestering proteins expanded during vertebrate evolution. We observed that protein diversity of MT-binding and tubulin-sequestering proteins increased by alternative splicing. In addition, we found that regions of the MT-binding protein tau and MAP6 displayed a clear increase in disorder extent during evolution. The data provide evidence that vertebrate evolution is paralleled by gene expansions, changes in alternative splicing and evolution of coding sequences of components of the MT system. The results suggest that in particular evolutionary changes in tubulin-structure proteins, MT-binding proteins and tubulin-sequestering proteins were prominent drivers for the development of increased neuronal complexity.


Asunto(s)
Evolución Biológica , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Vertebrados , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA