Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38813860

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Transducción de Señal , Transactivadores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Morfogenéticas Óseas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas
2.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639242

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Corteza Cerebral , Proteínas Señalizadoras YAP , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP/metabolismo
3.
Cell Mol Life Sci ; 81(1): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413417

RESUMEN

Administration of multiple subanesthetic doses of ketamine increases the duration of antidepressant effects relative to a single ketamine dose, but the mechanisms mediating this sustained effect are unclear. Here, we demonstrate that ketamine's rapid and sustained effects on affective behavior are mediated by separate and temporally distinct mechanisms. The rapid effects of a single dose of ketamine result from increased activity of immature neurons in the hippocampal dentate gyrus without an increase in neurogenesis. Treatment with six doses of ketamine over two weeks doubled the duration of behavioral effects after the final ketamine injection. However, unlike ketamine's rapid effects, this more sustained behavioral effect did not correlate with increased immature neuron activity but instead correlated with increased numbers of calretinin-positive and doublecortin-positive immature neurons. This increase in neurogenesis was associated with a decrease in bone morphogenetic protein (BMP) signaling, a known inhibitor of neurogenesis. Injection of a BMP4-expressing lentivirus into the dentate gyrus maintained BMP signaling in the niche and blocked the sustained - but not the rapid - behavioral effects of ketamine, indicating that decreased BMP signaling is necessary for ketamine's sustained effects. Thus, although the rapid effects of ketamine result from increased activity of immature neurons in the dentate gyrus without requiring an increase in neurogenesis, ketamine's sustained effects require a decrease in BMP signaling and increased neurogenesis along with increased neuron activity. Understanding ketamine's dual mechanisms of action should help with the development of new rapid-acting therapies that also have safe, reliable, and sustained effects.


Asunto(s)
Ketamina , Ketamina/farmacología , Ketamina/metabolismo , Ketamina/uso terapéutico , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Neuronas/metabolismo , Transducción de Señal
4.
Cell Mol Life Sci ; 79(1): 31, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936033

RESUMEN

The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.


Asunto(s)
Antidepresivos/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Envejecimiento/patología , Animales , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Clorhidrato de Duloxetina/farmacología , Terapia Electroconvulsiva , Fluoxetina/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/complicaciones , Trazodona/farmacología , Clorhidrato de Vilazodona/farmacología
5.
Neuron ; 106(1): 90-107.e13, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32059759

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide repeat expansion in C9orf72 (C9-HRE). While RNA and dipeptide repeats produced by C9-HRE disrupt nucleocytoplasmic transport, the proteins that become redistributed remain unknown. Here, we utilized subcellular fractionation coupled with tandem mass spectrometry and identified 126 proteins, enriched for protein translation and RNA metabolism pathways, which collectively drive a shift toward a more cytosolic proteome in C9-HRE cells. Among these was eRF1, which regulates translation termination and nonsense-mediated decay (NMD). eRF1 accumulates within elaborate nuclear envelope invaginations in patient induced pluripotent stem cell (iPSC) neurons and postmortem tissue and mediates a protective shift from protein translation to NMD-dependent mRNA degradation. Overexpression of eRF1 and the NMD driver UPF1 ameliorate C9-HRE toxicity in vivo. Our findings provide a resource for proteome-wide nucleocytoplasmic alterations across neurodegeneration-associated repeat expansion mutations and highlight eRF1 and NMD as therapeutic targets in C9orf72-associated ALS and/or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Drosophila/genética , Demencia Frontotemporal/genética , Neuronas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Factores de Terminación de Péptidos/genética , ARN Mensajero/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/metabolismo , Fraccionamiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Membrana Nuclear , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma , Fracciones Subcelulares , Espectrometría de Masas en Tándem
6.
Sci Rep ; 8(1): 743, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335619

RESUMEN

Ischemic stroke is a devastating disease with limited therapeutic options. It is very urgent to find a new target for drug development. Here we found that the blood level of MIF in ischemic stroke patients is upregulated. To figure out the pathological role of MIF in ischemic stroke, both in vitro and in vivo studies were conducted. For in vitro studies, primary cortical neuron cultures and adult rat brain endothelial cells (ARBECs) were subjected to oxygen-glucose deprivation (OGD)/reoxygenation. Middle cerebral artery occlusion (MCAo) rodent models were used for in vivo studies. The results show that MIF exerts no direct neuronal toxicity in primary culture but disrupts tight junction in ARBECs. Furthermore, administration of MIF following MCAo shows the deleterious influence on stroke-induced injury by destroying the tight junction of blood-brain barrier and increasing the infarct size. In contrast, administration of MIF antagonist ISO-1 has the profound neuroprotective effect. Our results demonstrate that MIF might be a good drug target for the therapy of stroke.


Asunto(s)
Barrera Hematoencefálica , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Permeabilidad , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Neuronas/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA