Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38899927

RESUMEN

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Asunto(s)
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacología , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Humanos , Pruebas de Sensibilidad Parasitaria , Animales , Peróxidos/farmacología
2.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34832911

RESUMEN

A recently developed artemisinin-quinoline hybrid, named 163A, has been shown to display potent activity against the asexual blood stage of Plasmodium, the malaria parasite. In this study, we determined its in vitro cytotoxicity to mammalian cells, its potency to suppress P. berghei hepatic infection and to decrease the viability of P. falciparum gametocytes, in addition to determining whether the drug exhibits efficacy of a P. berghei infection in mice. This hybrid compound has a low level of cytotoxicity to mammalian cells and, conversely, a high level of selectivity. It is potent in the prevention of hepatic stage development as well as in killing gametocytes, denoting a potential blockage of malaria transmission. The hybrid presents a potent inhibitory activity for beta-hematin crystal formation, in which subsequent assays revealed that its endoperoxide component undergoes bioactivation by reductive reaction with ferrous heme towards the formation of heme-drug adducts; in parallel, the 7-chloroquinoline component has binding affinity for ferric hemin. Both structural components of the hybrid co-operate to enhance the inhibition of beta-hematin, and this bitopic ligand property is essential for arresting the growth of asexual blood parasites. We demonstrated the in vivo efficacy of the hybrid as an erythrocytic schizonticide agent in comparison to a chloroquine/artemisinin combination therapy. Collectively, the findings suggest that the bitopic property of the hybrid is highly operative on heme detoxification suppression, and this provides compelling evidence for explaining the action of the hybrid on the asexual blood stage. For sporozoite and gametocyte stages, the hybrid conserves the potency typically observed for endoperoxide drugs, and this is possibly achieved due to the redox chemistry of endoperoxide components with ferrous heme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA