Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 16(4): 734-743, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33063736

RESUMEN

Electroencephalographic studies using graph theoretic analysis have found aberrations in functional connectivity in children with developmental dyslexia. However, how the training with visual tasks can change the functional connectivity of the semantic network in developmental dyslexia is still unclear. We looked for differences in local and global topological properties of functional networks between 21 healthy controls and 22 dyslexic children (8-9 years old) before and after training with visual tasks in this prospective case-control study. The minimum spanning tree method was used to construct the subjects' brain networks in multiple electroencephalographic frequency ranges during a visual word/pseudoword discrimination task. We found group differences in the theta, alpha, beta and gamma bands for four graph measures suggesting a more integrated network topology in dyslexics before the training compared to controls. After training, the network topology of dyslexic children had become more segregated and similar to that of the controls. In the θ, α and ß1-frequency bands, compared to the controls, the pre-training dyslexics exhibited a reduced degree and betweenness centrality of the left anterior temporal and parietal regions. The simultaneous appearance in the left hemisphere of hubs in temporal and parietal (α, ß1), temporal and superior frontal cortex (θ, α), parietal and occipitotemporal cortices (ß1), identified in the networks of normally developing children was not present in the brain networks of dyslexics. After training, the hub distribution for dyslexics in the theta and beta1 bands had become similar to that of the controls. In summary, our findings point to a less efficient network configuration in dyslexics compared to a more optimal global organization in the controls. This is the first study to investigate the topological organization of functional brain networks of Bulgarian dyslexic children. Approval for the study was obtained from the Ethics Committee of the Institute of Neurobiology and the Institute for Population and Human Studies, Bulgarian Academy of Sciences (approval No. 02-41/12.07.2019) on March 28, 2017, and the State Logopedic Center and the Ministry of Education and Science (approval No. 09-69/14.03.2017) on July 12, 2019.

2.
J Integr Neurosci ; 19(4): 601-618, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378835

RESUMEN

Aberrations in functional connectivity in children with developmental dyslexia have been found in electroencephalographic studies using graph analysis. How training with visual tasks can modify the functional semantic network in developmental dyslexia remains unclear. We investigate local and global topological properties of functional networks in multiple EEG frequency ranges based on a small-world propensity method in controls, pre- and post-training dyslexic children during visual word/pseudoword processing. Results indicated that the EEG network topology in dyslexics before the training was more integrated than controls, and after training - more segregated and similar to that of the controls in the theta (θ: 4-8), alpha (α: 8-13), beta (ß1: 13-20; ß2: 20-30), and gamma (γ1: 30-48; γ2: 52-70 Hz) bands for three graph measures. The pre-training dyslexics exhibited a reduced strength and betweenness centrality of the left anterior temporal and parietal regions in the θ, α, ß1 and γ1-frequency bands, compared to the controls. The simultaneous appearance of hubs in the left hemisphere (or both hemispheres) at temporal and parietal (α-word/γ-pseudoword discrimination), temporal and middle frontal cortex (θ, α-word), parietal and middle frontal cortex (ß1-word), parietal and occipitotemporal cortices (θ-pseudoword), identified in the EEG-based functional networks of normally developing children were not present in the networks of dyslexics. The hub distribution for dyslexics in the θ, α, and ß1 bands became similar to that of the controls. The topological organization of functional networks and the less efficient network configuration (long characteristic path length) in dyslexics compared to the more optimal global organization in the controls was studied for the first time after remediation training.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Conectoma , Dislexia , Red Nerviosa/fisiopatología , Niño , Remediación Cognitiva , Conectoma/métodos , Dislexia/diagnóstico , Dislexia/fisiopatología , Dislexia/rehabilitación , Femenino , Humanos , Terapia del Lenguaje , Estudios Longitudinales , Masculino , Evaluación de Resultado en la Atención de Salud , Reconocimiento Visual de Modelos/fisiología , Psicolingüística
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA