Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phycol ; 60(3): 654-667, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678594

RESUMEN

The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the Closterium peracerosum-strigosum-littorale (C. psl.) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the C. psl. complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.


Asunto(s)
Tamaño del Genoma , Filogenia , Closterium/genética
2.
Nat Commun ; 14(1): 7618, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030610

RESUMEN

The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.


Asunto(s)
Arabidopsis , Autoincompatibilidad en las Plantas con Flores , Arabidopsis/genética , Plantas , Poliploidía , Autoincompatibilidad en las Plantas con Flores/genética
3.
PNAS Nexus ; 2(11): pgad348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024403

RESUMEN

Natural genetic variation has facilitated the identification of genes underlying complex traits such as stress tolerances. We here evaluated the long-term (L-) heat tolerance (37°C for 5 days) of 174 Arabidopsis thaliana accessions and short-term (S-) heat tolerance (42°C, 50 min) of 88 accessions and found extensive variation, respectively. Interestingly, L-heat-tolerant accessions are not necessarily S-heat tolerant, suggesting that the tolerance mechanisms are different. To elucidate the mechanisms underlying the variation, we performed a chromosomal mapping using the F2 progeny of a cross between Ms-0 (a hypersensitive accession) and Col-0 (a tolerant accession) and found a single locus responsible for the difference in L-heat tolerance between them, which we named Long-term Heat Tolerance 1 (LHT1). LHT1 is identical to MAC7, which encodes a putative RNA helicase involved in mRNA splicing as a component of the MOS4 complex. We found one amino acid deletion in LHT1 of Ms-0 that causes a loss of function. Arabidopsis mutants of other core components of the MOS4 complex-mos4-2, cdc5-1, mac3a mac3b, and prl1 prl2-also showed hypersensitivity to L-heat stress, suggesting that the MOS4 complex plays an important role in L-heat stress responses. L-heat stress induced mRNA processing-related genes and compromised alternative splicing. Loss of LHT1 function caused genome-wide detrimental splicing events, which are thought to produce nonfunctional mRNAs that include retained introns under L-heat stress. These findings suggest that maintaining proper alternative splicing under L-heat stress is important in the heat tolerance of A. thaliana.

4.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348049

RESUMEN

Genome sizes are known to vary within and among closely related species, but the knowledge about genomic factors contributing to the variation and their impacts on gene functions is limited to only a small number of species. This study identified a more than 2-fold heritable genome size variation among the unicellular Zygnematophycean alga, Closterium peracerosum-strigosum-littorale (C. psl.) complex, based on short-read sequencing analysis of 22 natural strains and F1 segregation analysis. Six de novo assembled genomes revealed that genome size variation is largely attributable to genome-wide copy number variation (CNV) among strains rather than mating type-linked genomic regions or specific repeat sequences such as rDNA. Notably, about 30% of genes showed CNV even between strains that can mate with each other. Transcriptome and gene ontology analysis demonstrated that CNV is distributed nonrandomly in terms of gene functions, such that CNV was more often observed in the gene set with stage-specific expression. Furthermore, in about 30% of these genes with CNV, the expression level does not increase proportionally with the gene copy number, suggesting presence of dosage compensation, which was overrepresented in genes involved in basic biological functions, such as translation. Nonrandom patterns in gene duplications and corresponding expression changes in terms of gene functions may contribute to maintaining the high level of CNV associated with extensive genome size variation in the C. psl. complex, despite its possible detrimental effects.


Asunto(s)
Closterium , Closterium/genética , Tamaño del Genoma , Variaciones en el Número de Copia de ADN , Plantas/genética , Reproducción/genética
5.
Proc Natl Acad Sci U S A ; 119(30): e2201285119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867817

RESUMEN

Although complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes.


Asunto(s)
Arabidopsis , Interacciones Microbiota-Huesped , Microbiota , Hojas de la Planta , Arabidopsis/genética , Arabidopsis/microbiología , Estudio de Asociación del Genoma Completo , Interacciones Microbiota-Huesped/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200510, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35634918

RESUMEN

The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Asunto(s)
Evolución Biológica , Capsella , Capsella/genética , Plantas/genética , Polinización/genética , Reproducción/genética , Autofecundación
7.
J Evol Biol ; 34(12): 1981-1987, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662478

RESUMEN

In flowering plants, the evolution of self-fertilization (selfing) from obligate outcrossing is regarded as one of the most prevalent evolutionary transitions. The evolution of selfing is often accompanied by various changes in genomic, physiological and morphological properties. In particular, a set of reproductive traits observed typically in selfing species is called the "selfing syndrome". A mathematical model based on the kinship theory of genetic imprinting predicted that seed mass should become smaller in selfing species compared with outcrossing congeners, as a consequence of the reduced conflict between maternally and paternally derived alleles in selfing plants. Here, we test this prediction by examining the association between mating system and seed mass across a wide range of taxa (642 species), considering potential confounding factors: phylogenetic relationships and growth form. We focused on three plant families-Solanaceae, Brassicaceae and Asteraceae-where information on mating systems is abundant, and the analysis was performed for each family separately. When phylogenetic relationships were controlled, we consistently observed that selfers (represented by self-compatible species) tended to have a smaller seed mass compared with outcrossers (represented by self-incompatible species) in these families. In summary, our analysis suggests that small seeds should also be considered a hallmark of the selfing syndrome, although we note that mating systems have relatively small effects on seed mass variation.


Asunto(s)
Brassicaceae , Autofecundación , Brassicaceae/genética , Humanos , Filogenia , Polinización , Reproducción/genética , Semillas/genética
8.
Genes Genet Syst ; 96(2): 99-104, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-33883325

RESUMEN

Nuclear microsatellite markers were developed for Geranium thunbergii, an herbaceous plant characterized by petal color polymorphism. Utilizing RNA sequencing data obtained by next-generation sequencing techniques, we developed and characterized 19 polymorphic microsatellite markers with two to 12 alleles in the nuclear genome. These markers will be used to reveal the genetic structure and demographic history of G. thunbergii in the Japanese archipelago, which will elucidate the genetic background of flower color polymorphism among populations.


Asunto(s)
Geranium/genética , Repeticiones de Microsatélite , Pigmentación , Polimorfismo Genético , Flores/genética , Flores/metabolismo , Antecedentes Genéticos , Fitomejoramiento/métodos , Fitomejoramiento/normas , Estándares de Referencia
9.
Front Plant Sci ; 12: 768584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087546

RESUMEN

The number of pollen grains varies within and between species. However, little is known about the molecular basis of this quantitative trait, in contrast with the many studies available on cell differentiation in the stamen. Recently, the first gene responsible for pollen number variation, REDUCED POLLEN NUMBER1 (RDP1), was isolated by genome-wide association studies of Arabidopsis thaliana and exhibited the signature of natural selection. This gene encodes a homolog of yeast Mrt4 (mRNA turnover4), which is an assembly factor of the large ribosomal subunit. However, no further data were available to link ribosome function to pollen development. Here, we characterized the RDP1 gene using the standard A. thaliana accession Col-0. The frameshift mutant, rdp1-3 generated by CRISPR/Cas9 revealed the pleiotropic effect of RDP1 in flowering, thus demonstrating that this gene is required for a broad range of processes other than pollen development. We found that the natural Col-0 allele conferred a reduced pollen number against the Bor-4 allele, as assessed using the quantitative complementation test, which is more sensitive than transgenic experiments. Together with a historical recombination event in Col-0, which was identified by sequence alignment, these results suggest that the coding sequence of RDP1 is the candidate region responsible for the natural phenotypic variation. To elucidate the biological processes in which RDP1 is involved, we conducted a transcriptome analysis. We found that genes responsible for ribosomal large subunit assembly/biogenesis were enriched among the differentially regulated genes, which supported the hypothesis that ribosome biogenesis is disturbed in the rdp1-3 mutant. Among the pollen-development genes, three key genes encoding basic helix-loop-helix (bHLH) transcription factors (ABORTED MICROSPORES (AMS), bHLH010, and bHLH089), as well as direct downstream genes of AMS, were downregulated in the rdp1-3 mutant. In summary, our results suggest a specialized function of ribosomes in pollen development through RDP1, which harbors natural variants under selection.

10.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33016310

RESUMEN

Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.


Asunto(s)
Lotus , Mesorhizobium , Rhizobium , Genómica , Mesorhizobium/genética , Rhizobium/genética , Simbiosis
11.
Front Plant Sci ; 11: 576140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042191

RESUMEN

Self-compatibility in Arabidopsis thaliana represents the relatively recent disruption of ancestral obligate cross pollination, recognized as one of the prevalent evolutionary pathways in flowering plants, as noted by Darwin. Our previous study found that inversion of the male specificity gene (SP11/SCR) disrupted self-incompatibility, which was restored by overexpressing the SCR with the reversed inversion. However, SCR in A. thaliana has other mutations aside from the pivotal inversion, in both promoter and coding regions, with probable effects on transcriptional regulation. To examine the functional consequences of these mutations, we conducted reciprocal introductions of native promoters and downstream sequences from orthologous loci of self-compatible A. thaliana and self-incompatible A. halleri. Use of this inter-species pair enabled us to expand the scope of the analysis to transcriptional regulation and deletion in the intron, in addition to inversion in the native genomic background. Initial analysis revealed that A. thaliana has a significantly lower basal expression level of SCR transcripts in the critical reproductive stage compared to that of A. halleri, suggesting that the promoter was attenuated in inducing transcription in A. thaliana. However, in reciprocal transgenic experiments, this A. thaliana promoter was able to restore partial function if coupled with the functional A. halleri coding sequence, despite extensive alterations due to the self-compatible mode of reproduction in A. thaliana. This represents a synergistic effect of the promoter and the inversion resulting in fixation of self-compatibility, primarily enforced by disruption of SCR. Our findings elucidate the functional and evolutionary context of the historical transition in A. thaliana thus contributing to the understanding of the molecular events leading to development of self-compatibility.

12.
Nat Commun ; 11(1): 2885, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514036

RESUMEN

The number of male gametes is critical for reproductive success and varies between and within species. The evolutionary reduction of the number of pollen grains encompassing the male gametes is widespread in selfing plants. Here, we employ genome-wide association study (GWAS) to identify underlying loci and to assess the molecular signatures of selection on pollen number-associated loci in the predominantly selfing plant Arabidopsis thaliana. Regions of strong association with pollen number are enriched for signatures of selection, indicating polygenic selection. We isolate the gene REDUCED POLLEN NUMBER1 (RDP1) at the locus with the strongest association. We validate its effect using a quantitative complementation test with CRISPR/Cas9-generated null mutants in nonstandard wild accessions. In contrast to pleiotropic null mutants, only pollen numbers are significantly affected by natural allelic variants. These data support theoretical predictions that reduced investment in male gametes is advantageous in predominantly selfing species.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Genes de Plantas/genética , Polen/genética , Arabidopsis/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Evolución Molecular , Mutación , Plantas Modificadas Genéticamente , Polen/citología , Polen/metabolismo , Reproducción/genética , Homología de Secuencia de Ácido Nucleico
13.
New Phytol ; 227(6): 1872-1884, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32392621

RESUMEN

Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.


Asunto(s)
Zamiaceae , Ecosistema , Especiación Genética , Geografía , México , Filogenia
14.
Nat Plants ; 5(7): 731-741, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263241

RESUMEN

Pre-zygotic interspecies incompatibility in angiosperms is a male-female relationship that inhibits the formation of hybrids between two species. Here, we report on the identification of STIGMATIC PRIVACY 1 (SPRI1), an interspecies barrier gene in Arabidopsis thaliana. We show that the rejection activity of this stigma-specific plasma membrane protein is effective against distantly related Brassicaceae pollen tubes and is independent of self-incompatibility. Point-mutation experiments and functional tests of synthesized hypothetical ancestral forms of SPRI1 suggest evolutionary decay of SPRI1-controlled interspecies incompatibility in self-compatible A. thaliana. Hetero-pollination experiments indicate that SPRI1 ensures intraspecific fertilization in the pistil when pollen from other species are present. Our study supports the idea that SPRI1 functions as a barrier mechanism that permits entrance of pollen with an intrinsic signal from self species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassicaceae/genética , Flores/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Flores/metabolismo , Hibridación Genética , Proteínas de la Membrana/metabolismo , Filogenia , Polen/genética , Polen/metabolismo
15.
Mol Plant Microbe Interact ; 32(9): 1110-1120, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30880586

RESUMEN

To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.


Asunto(s)
Transferencia de Gen Horizontal , Variación Genética , Lotus , Mesorhizobium , Nódulos de las Raíces de las Plantas , Lotus/microbiología , Mesorhizobium/clasificación , Mesorhizobium/genética , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética
16.
Dev Growth Differ ; 61(1): 12-24, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474212

RESUMEN

Ever since Darwin, one of the major challenges in evolutionary biology is to unravel the process and mechanisms of adaptation and speciation. Population genomics-the analysis of whole-genome polymorphism data from large population samples-is a critical approach to study adaptation and speciation, as population genomics datasets enable us to: (1) perform genome-wide association studies (GWAS) to find genes underlying adaptive phenotypic variations; (2) scan the footprints of selection across the genome to pinpoint loci under selection; and (3) infer the structure and demographic history of populations. Here, we review recent studies of plants using population genomics, covering those focusing on interactions with other organisms, adaptations to local climatic conditions, and the genomic causes and consequences of reproductive isolation. Integrative studies involving GWAS, selection scans, functional studies, and fitness measurements in the field have successfully identified loci for adaptation, revealed the molecular basis of genetic trade-offs, and shown that fitness can be predicted by polygenic effects of a number of loci associated with local climate. We highlight the importance of the measurement of fitness and phenotypes in the field, which can be powerful tools when combined with population genomic analyses.


Asunto(s)
Adaptación Biológica/genética , Especiación Genética , Genoma de Planta/genética , Genómica , Plantas/clasificación , Plantas/genética , Fenotipo
17.
Proc Natl Acad Sci U S A ; 114(20): 5213-5218, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28473417

RESUMEN

Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.


Asunto(s)
Arabidopsis/genética , Genómica/métodos , África , África del Sur del Sahara , Secuencia de Bases , Evolución Biológica , Europa (Continente) , Evolución Molecular , Variación Genética/genética , Genética de Población/métodos , Genoma de Planta/genética , Haplotipos/genética , Filogenia , Análisis de Componente Principal
18.
Nat Plants ; 3: 17072, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28548656

RESUMEN

Osmotic stress caused by drought, salt or cold decreases plant fitness. Acquired stress tolerance defines the ability of plants to withstand stress following an initial exposure1. We found previously that acquired osmotolerance after salt stress is widespread among Arabidopsis thaliana accessions2. Here, we identify ACQOS as the locus responsible for ACQUIRED OSMOTOLERANCE. Of its five haplotypes, only plants carrying group 1 ACQOS are impaired in acquired osmotolerance. ACQOS is identical to VICTR, encoding a nucleotide-binding leucine-rich repeat (NLR) protein3. In the absence of osmotic stress, group 1 ACQOS contributes to bacterial resistance. In its presence, ACQOS causes detrimental autoimmunity, thereby reducing osmotolerance. Analysis of natural variation at the ACQOS locus suggests that functional and non-functional ACQOS alleles are being maintained due to a trade-off between biotic and abiotic stress adaptation. Thus, polymorphism in certain plant NLR genes might be influenced by competing environmental stresses.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Estrés Fisiológico/genética , Arabidopsis/fisiología , Genes de Plantas , Estudio de Asociación del Genoma Completo , Presión Osmótica
19.
Mol Biol Evol ; 34(8): 1878-1889, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379456

RESUMEN

Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. "Relict" A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.


Asunto(s)
Arabidopsis/genética , Autofecundación/genética , Alelos , Secuencia de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Evolución Molecular , Genes de Plantas/genética , Haplotipos/genética , Mutación , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético/genética
20.
Mol Biol Evol ; 34(4): 957-968, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087777

RESUMEN

Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Especiación Genética , Secuencia de Bases/genética , Variación Genética/genética , Genoma/genética , Genoma de Planta/genética , Filogenia , Poliploidía , Autofecundación/genética , Análisis de Secuencia de ADN/métodos , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...