Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38927728

RESUMEN

Background: Breast cancer (BC) has the highest morbidity rate and the second-highest mortality rate of all cancers among women. Recently, multi-cancer genome profiling (multi-CGP) tests have become clinically available. In this study, we aimed to clarify the significance of multi-CGP testing of BC by using the large clinical dataset from The Center for Cancer Genomics and Advanced Therapeutics (C-CAT) profiling database in Japan. Materials and Methods: A total of 3744 BC cases were extracted from the C-CAT database, which enrolled 60,250 patients between June 2019 and October 2023. Of the 3744 BC cases, a total of 3326 cases for which the C-CAT included information on ER, PR, and HER2 status were classified into four subtypes, including TNBC, HR+/HER2-, HR+/HER2+, and HR-/HER2+. Comparisons between groups were performed by the χ2 test or Fisher's exact test using EZR. Kaplan-Meier curves were created using the log-rank test. Results: Of all 3326 cases analyzed, 1114 (33.5%) were TNBC cases, HR+/HER2- accounted for 1787 cases (53.7%), HR+/HER2+ for 260 cases (7.8%), and HR-/HER2+ for 165 cases (5.0%). Genetic abnormalities were most frequently detected in TP53 (58.0%), PIK3CA (35.5%), MYC (18.7%), FGF19 (15.5%), and GATA3 (15.1%) across all BCs. The rate of TMB-High was 12.3%, and the rate of MSI-High was 0.3%, in all BC cases. Therapeutic drugs were proposed for patients with mutations in six genes: PIK3CA, ERBB2, PTEN, FGFR1, ESR1, and AKT1. The prognoses of HR+/HER2- cases were significantly (p = 0.044) better in the treated group than in the untreated group. Conclusions: These findings suggest that cancer gene panel testing is useful for HR+/HER2- cases.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Femenino , Japón/epidemiología , Persona de Mediana Edad , Neoplasias de la Mama/genética , Receptor ErbB-2/genética , Anciano , Adulto , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Anciano de 80 o más Años , Pronóstico , Mutación , Perfilación de la Expresión Génica/métodos , Fosfatidilinositol 3-Quinasa Clase I/genética
2.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765564

RESUMEN

Evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) has rapidly been accumulating. To uncover clinicopathological importance of periostin (POSTN) expression in colorectal cancer (CRC), the present study immunohistochemically examined its expression status. Furthermore, to reveal its mechanisms involved, molecular experiments were performed. In CRC tissues, 44% of the cases (119/269) exhibited POSTN expression in the CAFs. In contrast, CRC cells expressed POSTN at almost undetectable levels. Survival analyses identified that patients with POSTN-positive CRC had a significantly worse 5-year survival rate (63.2% vs. 81.2%; p = 0.011). Univariate analyses revealed that POSTN positivity was associated with peritoneal (p = 0.0031) and distant organ metastasis (p < 0.001). Furthermore, immunohistochemical analyses identified a significant association between POSTN and p53 complete loss status in CRC cells. Decorin and fibroblast activation protein expression in CAFs was also associated with POSTN. POSTN significantly enhanced the migration of both CRC cells and fibroblasts with FAK and AKT or STAT3 activation, and co-culture assays demonstrated the communication between CRC cells and fibroblasts, which enhanced STAT3 activation in fibroblasts. On the basis of our results, we speculated that stromal POSTN accelerated metastasis via stromal remodeling capacity and activated the migration of both tumor and stromal cells.

3.
PLoS One ; 17(12): e0278343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36472979

RESUMEN

Living organisms including bacteria, plants and animals sense ambient temperature so that they can avoid noxious temperature or adapt to new environmental temperature. A nematode C. elegans can sense innocuous temperature, and navigate themselves towards memorize past cultivation temperature (Tc) of their preference. For this thermotaxis, AFD thermosensory neuron is pivotal, which stereotypically responds to warming by increasing intracellular Ca2+ level in a manner dependent on the remembered past Tc. We aimed to reveal how AFD encodes the information of temperature into neural activities. cGMP synthesis in AFD is crucial for thermosensation in AFD and thermotaxis behavior. Here we characterized the dynamic change of cGMP level in AFD by imaging animals expressing a fluorescence resonance energy transfer (FRET)-based cGMP probe specifically in AFD and found that cGMP dynamically responded to both warming and cooling in a manner dependent on past Tc. Moreover, we characterized mutant animals that lack guanylyl cyclases (GCYs) or phosphodiesterases (PDEs), which synthesize and hydrolyze cGMP, respectively, and uncovered how GCYs and PDEs contribute to cGMP and Ca2+ dynamics in AFD and to thermotaxis behavior.


Asunto(s)
Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/genética
4.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36102820

RESUMEN

Animals integrate sensory stimuli presented at the past and present, assess the changes in their surroundings and navigate themselves toward preferred environment. Identifying the neural mechanisms of such sensory integration is pivotal to understand how the nervous system generates perception and behavior. Previous studies on thermotaxis behavior of Caenorhabditis elegans suggested that a single thermosensory neuron AFD plays an important role in integrating the past and present temperature information and is essential for the neural computation that drives the animal toward the preferred temperature region. However, the molecular mechanisms by which AFD executes this neural function remained elusive. Here we report multiple forward genetic screens to identify genes required for thermotaxis. We reveal that kin-4, which encodes the C. elegans homolog of microtubule-associated serine threonine kinase, plays dual roles in thermotaxis and can promote both cryophilic and thermophilic drives. We also uncover that a thermophilic defect of mutants for mec-2, which encodes a C. elegans homolog of stomatin, can be suppressed by a loss-of-function mutation in the gene crh-1, encoding a C. elegans homolog CREB transcription factor. Expression of crh-1 in AFD restored the crh-1-dependent suppression of the mec-2 thermotaxis phenotype, indicating that crh-1 can function in AFD to regulate thermotaxis. Calcium imaging analysis from freely moving animals suggest that mec-2 and crh-1 regulate the neuronal activity of the AIY interneuron, a postsynaptic partner of the AFD neuron. Our results suggest that a stomatin family protein can control the dynamics of neural circuitry through the CREB-dependent transcriptional regulation within a sensory neuron.


Asunto(s)
Proteínas de Caenorhabditis elegans , Taxia , Animales , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriales/metabolismo , Temperatura , Microtúbulos/metabolismo , Conducta Animal/fisiología , Factores de Transcripción/metabolismo
5.
Adv Exp Med Biol ; 1293: 321-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398823

RESUMEN

With a compact neural circuit consisting of entirely mapped 302 neurons, Caenorhabditis elegans plays an important role in the development and application of optogenetics. Optogenetics in C. elegans offers the opportunity that drastically changes experimental designs with increasing accessibility for neural activity and various cellular processes, thereby accelerating the studies on the functions of neural circuits and multicellular systems. Combining optogenetics with other approaches such as electrophysiology increases the resolution of elucidation. In particular, technologies like patterned illumination specifically developed in combination with optogenetics provide new tools to interrogate neural functions. In this chapter, we introduce the reasons to use optogenetics in C. elegans, and discuss the technical issues raised, especially for C. elegans by revisiting our chapter in the first edition of this book. Throughout the chapter, we review early and recent milestone works using optogenetics to investigate a variety of biological systems including neural and behavioral regulation.


Asunto(s)
Caenorhabditis elegans , Optogenética/métodos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Neuronas/metabolismo
6.
Aging Cell ; 19(5): e13146, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307902

RESUMEN

Age-dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin-based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory-evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD-specific guanylyl cyclase, GCY-8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY-8 cyclase domain reduces these age-dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy-8 animals. The lack of apparent correlation between age-dependent changes in the morphology or stimuli-evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age-related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature-evoked AFD responses, and experience-based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.


Asunto(s)
Senescencia Celular , Neuronas/citología , Taxia , Temperatura , Animales , Caenorhabditis elegans
7.
Proc Natl Acad Sci U S A ; 117(3): 1638-1647, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31911469

RESUMEN

Presynaptic plasticity is known to modulate the strength of synaptic transmission. However, it remains unknown whether regulation in presynaptic neurons can evoke excitatory and inhibitory postsynaptic responses. We report here that the Caenorhabditis elegans homologs of MAST kinase, Stomatin, and Diacylglycerol kinase act in a thermosensory neuron to elicit in its postsynaptic neuron an excitatory or inhibitory response that correlates with the valence of thermal stimuli. By monitoring neural activity of the valence-coding interneuron in freely behaving animals, we show that the alteration between excitatory and inhibitory responses of the interneuron is mediated by controlling the balance of two opposing signals released from the presynaptic neuron. These alternative transmissions further generate opposing behavioral outputs necessary for the navigation on thermal gradients. Our findings suggest that valence-encoding interneuronal activity is determined by a presynaptic mechanism whereby MAST kinase, Stomatin, and Diacylglycerol kinase influence presynaptic outputs.


Asunto(s)
Caenorhabditis elegans/metabolismo , Neuronas/fisiología , Transmisión Sináptica/fisiología , Taxia/fisiología , Animales , Conducta Animal , Proteínas de Caenorhabditis elegans/metabolismo , Diacilglicerol Quinasa/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo
8.
Sci Rep ; 9(1): 10104, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300701

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, for which there is no effective treatment. Previously, we generated a Caenorhabditis elegans model of ALS, in which the expression of dnc-1, the homologous gene of human dynactin-1, is knocked down (KD) specifically in motor neurons. This dnc-1 KD model showed progressive motor defects together with axonal and neuronal degeneration, as observed in ALS patients. In the present study, we established a behavior-based, automated, and quantitative drug screening system using this dnc-1 KD model together with Multi-Worm Tracker (MWT), and tested whether 38 candidate neuroprotective compounds could improve the mobility of the dnc-1 KD animals. We found that 12 compounds, including riluzole, which is an approved medication for ALS patients, ameliorated the phenotype of the dnc-1 KD animals. Nifedipine, a calcium channel blocker, most robustly ameliorated the motor deficits as well as axonal degeneration of dnc-1 KD animals. Nifedipine also ameliorated the motor defects of other motor neuronal degeneration models of C. elegans, including dnc-1 mutants and human TAR DNA-binding protein of 43 kDa overexpressing worms. Our results indicate that dnc-1 KD in C. elegans is a useful model for the screening of drugs against motor neuron degeneration, and that MWT is a powerful tool for the behavior-based screening of drugs.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Nifedipino/farmacología , Riluzol/farmacología , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Complejo Dinactina/genética , Humanos , Neuronas Motoras/patología
9.
J Cell Biol ; 217(7): 2463-2483, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29712735

RESUMEN

In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy-centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.


Asunto(s)
Ciclo Celular/genética , Centriolos/genética , Centrosoma/metabolismo , Replicación del ADN/genética , Animales , Línea Celular , Centriolos/metabolismo , Diploidia , Haploidia , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética
10.
PLoS Comput Biol ; 14(5): e1006122, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29718905

RESUMEN

Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM) and isothermal migration (IM). With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Toma de Decisiones/fisiología , Aprendizaje/fisiología , Refuerzo en Psicología , Taxia/fisiología , Animales , Biología Computacional
11.
Dalton Trans ; 46(37): 12645-12654, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28914303

RESUMEN

New dyad systems based on a zinc(ii) porphyrin complex and a 2,2'-bipyridine moiety linked by amide bridges having various bridging groups were synthesized. The photochemical behavior was investigated using fluorescence spectroscopy and a time-resolved absorption technique. The singlet excited state of the porphyrin complex was found to be partially quenched by Cu2+ in methanol, and a photoinduced electron transfer from the excited state of the porphyrin moiety to the Cu(ii)-bipyridine moiety was observed using a transient absorption technique. The relatively long lifetime of the charge-separated state was ascribed to the slow electron-transfer reaction of the Cu(ii)/Cu(i) couple bound to the bipyridine moiety. The lifetime of the charge-separated state of dyads becomes longer with the increase of the distance between the porphyrin and bipyridine moieties, and these findings are discussed using an empirical formula for the relationship between the reactivity and molecular structure of dyads.

12.
J Neurosci ; 36(9): 2571-81, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936999

RESUMEN

During navigation, animals process temporal sequences of sensory inputs to evaluate the surrounding environment. Thermotaxis of Caenorhabditis elegans is a favorable sensory behavior to elucidate how navigating animals process sensory signals from the environment. Sensation and storage of temperature information by a bilaterally symmetric pair of thermosensory neurons, AFD, is essential for the animals to migrate toward the memorized temperature on a thermal gradient. However, the encoding mechanisms of the spatial environment with the temporal AFD activity during navigation remain to be elucidated. Here, we show how the AFD neuron encodes sequences of sensory inputs to perceive spatial thermal environment. We used simultaneous calcium imaging and tracking system for a freely moving animal and characterized the response property of AFD to the thermal stimulus during thermotaxis. We show that AFD neurons respond to shallow temperature increases with intermittent calcium pulses and detect temperature differences with a critical time window of 20 s, which is similar to the timescale of behavioral elements of C. elegans, such as turning. Convolution of a thermal stimulus and the identified response property successfully reconstructs AFD activity. Conversely, deconvolution of the identified response kernel and AFD activity reconstructs the shallow thermal gradient with migration trajectory, indicating that AFD activity and the migration trajectory are sufficient as the encoded signals for thermal environment. Our study demonstrates bidirectional transformation between environmental thermal information and encoded neural activity. SIGNIFICANCE STATEMENT: Deciphering how information is encoded in the nervous system is an important challenge for understanding the principles of information processing in neural circuits. During navigation behavior, animals transform spatial information to temporal patterns of neural activity. To elucidate how a sensory system achieves this transformation, we focused on a thermosensory neuron in Caenorhabditis elegans called AFD, which plays a major role in a sensory behavior. Using tracking and calcium imaging system for freely moving animals, we identified the response property of the AFD. The identified response property enabled us to reconstruct both neural activity from a temperature stimulus and a spatial thermal environment from neural activity. These results shed light on how a sensory system encodes the environment.


Asunto(s)
Neuronas/fisiología , Sensación Térmica/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Locomoción/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas Aferentes/fisiología , Temperatura
13.
Front Neural Circuits ; 7: 187, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24348340

RESUMEN

The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Japón , Vías Nerviosas/fisiología
14.
J Cell Biol ; 202(4): 623-36, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23960144

RESUMEN

The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B-dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.


Asunto(s)
Anafase , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Células Cultivadas , Células HeLa , Humanos , Spodoptera
15.
Dev Growth Differ ; 55(4): 550-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23594233

RESUMEN

Computational microscope systems are becoming a major part of imaging biological phenomena, and the development of such systems requires the design of automated regulation of microscopes. An important aspect of automated regulation is feedback regulation, which is the focus of this review. As modern microscope systems become more complex, often with many independent components that must work together, computer control is inevitable since the exact orchestration of parameters and timings for these multiple components is critical to acquire proper images. A number of techniques have been developed for biological imaging to accomplish this. Here, we summarize the basics of computational microscopy for the purpose of building automatically regulated microscopes focus on feedback regulation by image processing. These techniques allow high throughput data acquisition while monitoring both short- and long-term dynamic phenomena, which cannot be achieved without an automated system.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Algoritmos , Automatización , Simulación por Computador , Sistemas de Computación , Diseño de Equipo , Retroalimentación , Modelos Teóricos , Óptica y Fotónica , Programas Informáticos , Factores de Tiempo
16.
PLoS Genet ; 7(5): e1001384, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21589894

RESUMEN

Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Proteínas de la Membrana/fisiología , Neuronas/fisiología , Secuencia de Aminoácidos , Animales , Conducta Animal , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
17.
PLoS One ; 4(5): e5603, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19440349

RESUMEN

BACKGROUND: During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways. PRINCIPAL FINDINGS: Here, we show that the expression of Sprouty4, which encodes an FGF inhibitor, oscillates in 2-h cycles in the mouse PSM in synchrony with other oscillating genes from the Notch signaling pathway, such as lunatic fringe. Sprouty4 does not oscillate in Hes7-null mutant mouse embryos, and Hes7 can inhibit FGF-induced transcriptional activity of the Sprouty4 promoter. CONCLUSIONS: Thus, periodic expression of Sprouty4 is controlled by the Notch segmentation clock and may work as a mediator that links the temporal periodicity of clock gene oscillations with the spatial periodicity of boundary formation which is regulated by the gradient of FGF/Wnt activity.


Asunto(s)
Relojes Biológicos/fisiología , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores Notch/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Western Blotting , Embrión de Mamíferos/metabolismo , Glicosiltransferasas/metabolismo , Hibridación in Situ , Mesodermo/embriología , Ratones , Ratones Transgénicos , Pez Cebra/metabolismo
18.
PLoS Comput Biol ; 4(11): e1000223, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19008941

RESUMEN

Advances in time-lapse fluorescence microscopy have enabled us to directly observe dynamic cellular phenomena. Although the techniques themselves have promoted the understanding of dynamic cellular functions, the vast number of images acquired has generated a need for automated processing tools to extract statistical information. A problem underlying the analysis of time-lapse cell images is the lack of rigorous methods to extract morphodynamic properties. Here, we propose an algorithm called edge evolution tracking (EET) to quantify the relationship between local morphological changes and local fluorescence intensities around a cell edge using time-lapse microscopy images. This algorithm enables us to trace the local edge extension and contraction by defining subdivided edges and their corresponding positions in successive frames. Thus, this algorithm enables the investigation of cross-correlations between local morphological changes and local intensity of fluorescent signals by considering the time shifts. By applying EET to fluorescence resonance energy transfer images of the Rho-family GTPases Rac1, Cdc42, and RhoA, we examined the cross-correlation between the local area difference and GTPase activity. The calculated correlations changed with time-shifts as expected, but surprisingly, the peak of the correlation coefficients appeared with a 6-8 min time shift of morphological changes and preceded the Rac1 or Cdc42 activities. Our method enables the quantification of the dynamics of local morphological change and local protein activity and statistical investigation of the relationship between them by considering time shifts in the relationship. Thus, this algorithm extends the value of time-lapse imaging data to better understand dynamics of cellular function.


Asunto(s)
Biología Computacional/métodos , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Animales , Biomarcadores , Línea Celular , Forma de la Célula , Citoesqueleto/enzimología , GTP Fosfohidrolasas/genética , Humanos , Mutación/genética , Neuritas/química , Ratas
19.
Biophys J ; 89(2): 812-22, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15923236

RESUMEN

To systematically understand the molecular events that underlie biological phenomena, we must develop methods to integrate an enormous amount of genomic and proteomic data. The integration of molecular data should go beyond the construction of biochemical cascades among molecules to include tying the biochemical phenomena to physical events. For the behavior and guidance of growth cones, it remains largely unclear how biochemical events in the cytoplasm are linked to the morphological changes of the growth cone. We take a computational approach to simulate the biochemical signaling cascade involving members of the Rho family of GTPases and examine their potential roles in growth-cone motility and axon guidance. Based on the interactions between Cdc42, Rac, and RhoA, we show that the activation of a Cdc42-specific GEF resulted in switching responses between oscillatory and convergent activities for all three GTPases. We propose that the switching responses of these GTPases are the molecular basis for the decision mechanism that determines the direction of the growth-cone expansion, providing a spatiotemporal integration mechanism that allows the growth cone to detect small gradients of external guidance cues. These results suggest a potential role for the cross talk between Rho GTPases in governing growth-cone movement and axon guidance and underscore the link between chemodynamic reactions and cellular behaviors.


Asunto(s)
Axones/fisiología , Modelos Neurológicos , Regeneración Nerviosa/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Axones/química , Simulación por Computador , Humanos , Modelos Químicos , Modelos Moleculares , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...