Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 50(8): 3325-31, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21405060

RESUMEN

Interaction of the copper, {[3,5-(CF(3))(2)Pz]Cu}(3), and silver, {[3,5-(CF(3))(2)Pz]Ag}(3), macrocycles [3,5-(CF(3))(2)Pz = 3,5-bis(trifluoromethyl)pyrazolate] with cyclooctatetraeneiron tricarbonyl, (cot)Fe(CO)(3), was investigated by IR and NMR spectroscopy for the first time. The formation of 1:1 complexes was observed at low temperatures in hexane. The composition of the complexes (1:1) and their thermodynamic characteristics in hexane and dichloromethane were determined. The π-electron system of (cot)Fe(CO)(3) was proven to be the sole site of coordination in solution and in the solid state. However, according to the single-crystal X-ray data, the complex has a different (2:1) composition featuring the sandwich structure. The complexes of ferrocene with copper and silver macrocycles have a columnar structure (X-ray data).


Asunto(s)
Cobre/química , Compuestos Ferrosos/química , Compuestos de Hierro Carbonilo/química , Compuestos Organometálicos/síntesis química , Pirazoles/química , Plata/química , Ligandos , Metalocenos , Modelos Moleculares , Compuestos Organometálicos/química
2.
Inorg Chem ; 48(8): 3667-78, 2009 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-19281257

RESUMEN

Proton-transfer and H(2)-elimination reactions of aluminum hydride AlH(3)(NMe(3)) (TMAA) with XH acids were studied by means of IR and NMR spectroscopy and DFT calculations. The dihydrogen-bonded (DHB) intermediates in the interaction of the TMAA with XH acids (CH(3)OH, (i)PrOH, CF(3)CH(2)OH, adamantyl acetylene, indole, 2,3,4,5,6-pentafluoroaniline, and 2,3,5,6-tetrachloroaniline) were examined experimentally at low temperatures, and the spectroscopic characteristics, dihydrogen bond strength and structures, and the electronic and energetic characteristics of these complexes were determined by combining experimental and theoretical approaches. The possibility of two different types of DHB complexes with polydentate proton donors (typical monodentate and bidentate coordination with the formation of a symmetrical chelate structure) was shown by DFT calculations and was experimentally proven in solution. The DHB complexes are intermediates of proton-transfer and H(2)-elimination reactions. The extent of this reaction is very dependent on the acid strength and temperature. With temperature increases the elimination of H(2) was observed for OH and NH acids, yielding the reaction products with Al-O and Al-N bonds. The reaction mechanism was computationally studied. Besides the DHB pathway for proton transfer, another pathway starting from a Lewis complex was discovered. Preference for one of the pathways is related to the acid strength and the nucleophilicity of the proton donor. As a consequence of the dual Lewis acid-base nature of neutral aluminum hydride, participation of a second ROH molecule acting as a bifunctional catalyst forming a six-member cycle connecting aluminum and hydride sites notably reduces the reaction barrier. This mechanism could operate for proton transfer from weak OH acids to TMAA in the presence of an excess of proton donor.


Asunto(s)
Ácidos/química , Compuestos de Aluminio/química , Hidrógeno/química , Metilaminas/química , Compuestos Organometálicos/química , Protones , Simulación por Computador , Enlace de Hidrógeno , Modelos Químicos , Espectrofotometría Infrarroja
3.
J Phys Chem A ; 112(35): 8198-204, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18698750

RESUMEN

The results of DFT calculations of harmonic and anharmonic frequencies of the dihydrogen bonded (DHB) complexes H 3EH (-)...HOR (E = B, Al, Ga and HOR = CH 3OH, CF 3CH 2OH) in gas phase and in low polar medium (by CPCM model) in comparison with the partners are presented. Normal coordinate analysis of the low-frequency modes was carried out to assign the new vibrations induced by DHB formation by the potential energy distribution values. Among them, the intermolecular H...H stretching vibrations only have individual modes. The influence of central atom mass and isotope and the strength of the proton donor effects were determined. The systems convenient for IR studies were chosen from the calculation predictions. The spectral investigation was made on the BH 4 (-)/ROH complexes (ROH = CH 2FCH 2OH (MFE), CF 3CH 2OH (TFE), (CF 3) 2CHOH (HFIP)). The results of temperature dependence, isotope substitution, and influence of the proton-donor strength studies agree with the theoretical conclusions. Combination of experimental and theoretical approaches allowed determining for the first time the intermolecular stretching mode characterizing intrinsic DHB vibrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA