Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213649

RESUMEN

Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.

2.
Nat Commun ; 15(1): 6825, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122739

RESUMEN

Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.

3.
Sci Bull (Beijing) ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39060214

RESUMEN

Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.

4.
Nat Commun ; 15(1): 5040, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866786

RESUMEN

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.

5.
Adv Mater ; 36(24): e2313752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576272

RESUMEN

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

6.
Adv Mater ; 35(18): e2209897, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36720106

RESUMEN

Solar heating and radiative cooling techniques have been proposed for passive space thermal management to reduce the global energy burden. However, the currently used single-function envelope/coating materials can only achieve static temperature regulation, presenting limited energy savings and poor adaption to dynamic environments. In this study, a sandwich-structured fabric, composed of vertical graphene, graphene glass fiber fabric, and polyacrylonitrile nanofibers is developed, with heating and cooling functions integrated through multiband, synergistic, (solar spectrum and mid-infrared ranges) and asymmetric optical modulations on two sides of the fabric. The dual-function fabric demonstrates high adaption to the dynamic environment and superior performance in a zero-energy-input temperature regulation. Furthermore, it demonstrates ≈15.5 and ≈31.1 MJ m-2 y-1 higher annual energy savings compared to those of their cooling-only and heating-only counterparts, corresponding to ≈173.7 MT reduction in the global CO2 emission. The fabric exhibits high scalability for batch manufacturing with commercially abundant raw materials and facile technologies, providing a favorable guarantee of its mass production and use.

7.
J Am Chem Soc ; 144(34): 15562-15568, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35980604

RESUMEN

Graphene has been widely used as a solar absorber for its broad-band absorption. However, targeting a higher photothermal efficiency, the intrinsic infrared radiation loss of graphene requires to be further reduced. Herein, band structure engineering is performed to modulate graphene infrared radiation. Nitrogen-doped vertical graphene is grown on quartz foam (NVGQF) by the plasma-enhanced chemical vapor deposition method. Under the premise of keeping high solar absorption (250-2500 nm), graphitic nitrogen doping effectively modulates the infrared emissivity (2.5-25 µm) of NVGQF from 0.96 to 0.68, reducing the radiation loss by ∼31%. Based on the excellent photothermal properties of NVGQF, a temperature-gradient-driven crude oil collecting raft is designed, where the crude oil flows along the collecting path driven by the viscosity gradient without any external electric energy input. Compared with a nondoped vertical graphene quartz foam raft, the NVGQF raft with a superior photothermal efficiency shows a significantly enhanced crude oil collecting efficiency by three times. The advances in this work suggest broad radiation-managed application platforms for graphene materials, such as seawater desalination and personal or building thermal management.

8.
Small Methods ; 6(7): e2200499, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35610184

RESUMEN

The lightweight, flexible, high-performance electrothermal material is in high demand in object thermal management. Graphene glass fiber fabric (GGFF) is characterized by excellent electrical conductivity, light weight, and high flexibility, showing superiorities as an electrothermal material. However, the traditional single-carbon-precursor chemical vapor deposition (CVD) graphene growth strategy commonly suffers from the severe thickness nonuniformity of the large-sized graphene film along the gas-flowing direction. Herein, a complementary CVD graphene growth strategy based on the simultaneous introduction of high- and low-decomposition-energy-barrier mixed carbon precursors is developed. In this way, the large-area uniform GGFF with a dramatically decreased nonuniformity coefficient is fabricated (0.260 in 40 cm × 4 cm). GGFF-based heater presents a widely tunable temperature range (20-170 °C) at low working voltage (<10 V) and uniform large-area heating temperature (171.4 ± 3.6 °C in 20 cm × 15 cm), which realizes remarkable anti/deicing performances under the low energy consumption (fast ice melting rate of 79 s mm-1 under a low energy consumption of 0.066 kWh mm-1 m-2 ). The large-area uniform GGFF possesses substantial advantages for applications in thermal management, and the complementary CVD fabrication strategy shows reliable scalability and universality, which can be extended to the synthesis of various materials.

9.
ACS Appl Mater Interfaces ; 14(17): 19889-19896, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437993

RESUMEN

Encapsulation for carbon-based electronic devices against oxidation can enhance their long-term working stability. Graphene glass fiber fabric (GGFF), as an advanced flexible electrothermal material, also struggles with graphene oxidation. The flexible, full-surface, conformal encapsulation for each fiber in the large-area fabric puts forward high requirements for encapsulating materials and techniques. Herein, the nanometer-thick h-BN layer was in situ grown on cambered surfaces of each fiber in GGFF with the chemical vapor deposition method. Stable heating duration (500 °C) of h-BN-encapsulated GGFF (h-BN/GGFF) was increased by 1 order of magnitude without compromising the electrothermal performances and flexibility. Theoretical simulations revealed that the enhanced oxidation resistance of h-BN/GGFF was attributed to the decreased interaction and adsorption life of oxygen. The proposed flexible, full-surface, conformal encapsulation technique targeting the fiber-shaped graphene electrothermal device is scalable and can be extended to the other carbon materials, even devices with intricate shapes, which will promote the development of flexible electronics.

10.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159854

RESUMEN

Conductive composites of polypropylene (PP) and polyethylene (PE) filled with thermally reduced graphene oxide (TRG) were prepared using two different processing sequences. One was a one-step processing method in which the TRG was simultaneously melt blended with PE and PP, called TRG/PP/PE. The second was a two-step processing method in which the TRG and the PP were mixed first, and then the (TRG/PP) masterbatch was blended with PE, called (TRG/PP)/PE. The phase morphology and localization of the TRG in TRG/PP/PE and (TRG/PP)/PE composites with different PP/PE compositions were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The TRG was found to be selectively dispersed in the PE phase of the TRG/PP/PE composites, resulting in a low percolation threshold near 2.0 wt%. In the (TRG/PP)/PE composites, the TRG was selectively located at the PP/PE blend interface, resulting in a percolation threshold that was lower than 1.0 wt%. With the addition of 2.0 wt% TRG, the (TRG/PP)/PE composites exhibited a wide range of electrical conductivities at PP/PE weight ratios of 10 w/90 w to 80 w/20 w. Moreover, electrical and rheological measurements of the composites revealed that the co-continuous phase structure is the most efficient candidate for the fabrication of conductive composites.

11.
ACS Nano ; 16(2): 2577-2584, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35107258

RESUMEN

Radiant heating, as a significant thermal management technique, is best known for its high thermal effect, media-free operation, good penetration, and compatibility for different heated shapes. To promote sustainable development in this area, developing advanced infrared radiation material is in high demand. In this work, a lightweight, flexible dual-emitter infrared electrothermal material, graphene glass fiber (GGF), is developed by chemical vapor deposition (CVD) method, with both graphene and glass fiber as the radiation elements. Large-area GGF fabric (GGFF) exhibits wavelength-independent high infrared emissivity (0.92) and thermal radiation efficiency (79.4%), as well as ultrafast electrothermal response (190.7 °C s-1 at 9.30 W cm-2) and uniform heating temperature. The superior radiant heating capability of GGFF to traditional alloy heating wires can achieve 33.3% energy saving. GGF can promote the development of efficient and energy-saving heat management technology.

12.
Small ; 15(37): e1902070, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31379088

RESUMEN

Solar-driven evaporation is a promising way of using abundant solar energy for desalinating polluted water or seawater, which addresses the challenge of global fresh water scarcity. Cost-effectiveness and durability are key factors for practical solar-driven evaporation technology. The present cutting-edge techniques mostly rely on costly and complex fabricated nanomaterials, such as metallic nanoparticles, nanotubes, nanoporous hydrogels, graphene, and graphene derivatives. Herein, a black nylon fiber (BNF) flocking board with a vertically aligned array prepared via a convenient electrostatic flocking technique is reported, presenting an extremely high solar absorbance (99.6%), a water self-supply capability, and a unique salt self-dissolution capability for seawater desalination. Through a carefully designed 3D structure, a plug-in-type BNF flocking board steam generator realizes a high evaporation rate of 2.09 kg m-2 h-1 under 1 kW m-2 solar illumination, well beyond its corresponding upper limit of 1.50 kg m-2 h-1 (assuming 100% solar energy is being used for evaporation latent heat). With the advantages of high-efficiency fabrication, cost-effectiveness, high evaporation rate, and high endurance in seawater desalination, this 3D design provides a new strategy to build up an economic, sustainable, and rapid solar-driven steam generation system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA