Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Mater Horiz ; 10(10): 4213-4223, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37477499

Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in µC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

2.
Adv Sci (Weinh) ; 10(14): e2207023, 2023 05.
Article En | MEDLINE | ID: mdl-36935358

Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs' channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifier's output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.


Electronics , Neurons , Reproducibility of Results , Signal Processing, Computer-Assisted , Transistors, Electronic
3.
Nat Mater ; 22(2): 242-248, 2023 02.
Article En | MEDLINE | ID: mdl-36635590

Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.


Electrons , Polymers , Neurons/physiology , Signal Transduction , Semiconductors
5.
Nat Commun ; 13(1): 901, 2022 02 22.
Article En | MEDLINE | ID: mdl-35194026

Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates.


Brain-Computer Interfaces , Robotics , Neuronal Plasticity , Neurons , Silicon , Synapses/physiology
6.
Adv Mater ; 34(4): e2106235, 2022 Jan.
Article En | MEDLINE | ID: mdl-34658088

Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm  ≈ 11 S cm-1 ) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm-1  V-1 s-1 ), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

7.
Nat Commun ; 12(1): 2354, 2021 Apr 21.
Article En | MEDLINE | ID: mdl-33883549

Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8 S cm-1, along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

8.
Nat Commun ; 10(1): 5053, 2019 11 07.
Article En | MEDLINE | ID: mdl-31699999

The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications.

9.
Small ; 14(48): e1803313, 2018 Nov.
Article En | MEDLINE | ID: mdl-30328292

Paper is emerging as a promising flexible, high surface-area substrate for various new applications such as printed electronics, energy storage, and paper-based diagnostics. Many applications, however, require paper that reaches metallic conductivity levels, ideally at low cost. Here, an aqueous electroless copper-plating method is presented, which forms a conducting thin film of fused copper nanoparticles on the surface of the cellulose fibers. This paper can be used as a current collector for anodes of lithium-ion batteries. Owing to the porous structure and the large surface area of cellulose fibers, the copper-plated paper-based half-cell of the lithium-ion battery exhibits excellent rate performance and cycling stability, and even outperforms commercially available planar copper foil-based anode at ultra-high charge/discharge rates of 100 C and 200 C. This mechanically robust metallic-paper composite has promising applications as the current collector for light-weight, flexible, and foldable paper-based 3D Li-ion battery anodes.

10.
Entropy (Basel) ; 20(5)2018 May 11.
Article En | MEDLINE | ID: mdl-33265449

As a nonlinear dynamic method for complexity measurement of time series, multiscale entropy (MSE) has been successfully applied to fault diagnosis of rolling bearings. However, the MSE algorithm is sensitive to the predetermined parameters and depends heavily on the length of the time series and MSE may yield an inaccurate estimation of entropy or undefined entropy when the length of time series is too short. To improve the robustness of complexity measurement for short time series, a novel nonlinear parameter named multiscale distribution entropy (MDE) was proposed and employed to extract the nonlinear complexity features from vibration signals of rolling bearing in this paper. Combining with t-distributed stochastic neighbor embedding (t-SNE) for feature dimension reduction and Kriging-variable predictive models based class discrimination (KVPMCD) for automatic identification, a new intelligent fault diagnosis method for rolling bearings was proposed. Finally, the proposed approach was applied to analyze the experimental data of rolling bearings and the results indicated that the proposed method could distinguish the different fault categories of rolling bearings effectively.

11.
Nanoscale ; 2(10): 2217-22, 2010 Oct.
Article En | MEDLINE | ID: mdl-20835435

We report on single nanofiber field-effect transistors made by the light-emitting polymer, poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene). We measure electrical performances comparable to or better than those of thin-film transistors by the same organic semiconductor, due to the molecular alignment induced by electrospinning, such as hole mobility of the order of 10(-3) cm(2) V(-1) s(-1) and on/off current ratios up to 780. In addition, we observe controllable photoluminescence intensity quenching by varying the gate voltage up to -40 V with device operation in the luministor mode. Single light-emitting polymer nanofiber transistors coupling electrical and optical functionalities open the way towards low cost and flexible one-dimensional switches and nanofiber-based light-emitting transistors.

12.
J Nanosci Nanotechnol ; 9(2): 1015-8, 2009 Feb.
Article En | MEDLINE | ID: mdl-19441444

CMOS/nanowire/nanodevice (CMOL) hybrid circuit promises great opportunities for future hybrid nano-scale integrated circuit implementation. In order to improve the fabrication and performance of CMOL circuits, a novel three dimension (3D) architecture is introduced in this work. 3D CMOL eliminates this special pin requirement, enabling feasible fabrication. Furthermore, each unit in the 3D CMOL doubles the density of nanowires of the original CMOL circuit, while maintaining similar speed/power and fault tolerance performance. The combination of 3D integration and CMOS-nano hybrid circuits shows a great potential for innovation and technology breakthrough.

13.
J Am Chem Soc ; 128(39): 12917-22, 2006 Oct 04.
Article En | MEDLINE | ID: mdl-17002388

In this paper, (1) a simple and controllable method to synthesize single crystalline nanoribbons of CuTCNQ in a large area was demonstrated by using a physical and chemical vapor combined deposition technique. (2) Nanoribbons synthesized by this method were identified to belong to phase I. (3) Devices and device arrays of nanoribbons were in situ fabricated by this method using gap electrodes and gap electrode arrays. (4) Current-voltage characteristics of crystalline devices and device arrays of nanoribbons exhibited semiconductor properties, and this conclusion was further confirmed by the results of devices based on an individual nanoribbon or microribbon of CuTCNQ (phase I). The controllable synthesis of nanoribbons for the in situ fabrication of crystalline nanodevices and device arrays will be attractive for nanoelectronics. Moreover, semiconductor current-voltage characteristics of the nanoribbons will be beneficial to the understanding of CuTCNQ.

...