Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 669: 965-974, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38759595

RESUMEN

Efficient oxygen evolution reaction (OER) is vital for water electrolysis and advanced hydrogen energy production. However, the sluggish kinetics of this reaction require significant overpotentials, leading to high energy consumption. Therefore, developing OER electrocatalysts with exceptional performance and long-term durability is crucial for enhancing the energy efficiency and cost-effectiveness of the hydrogen production process. In this research, novel FeOOH/Co9S8 catalysts were prepared through a two-step hydrothermal reaction followed by one-step electrodeposition on nickel foam for an alkaline OER. The as-obtained catalysts possessed abundant non-homogeneous interfaces between FeOOH and Co9S8 nanosheets, conducive to optimized coordination environments of Fe and Co sites by redistributing interfacial charges. This synergy strengthened the chemisorption of oxygenated intermediates, leading to accelerated reaction kinetics, abundant active sites, and enhanced OER performance. The optimized electrocatalyst FeOOH/Co9S8-15 achieved a current density of 10 mA cm-2 at an overpotential of 248 mV and good stability for over 140 h. This study presents a novel approach for producing compelling and durable alkaline dielectric OER electrocatalysts, which will be helpful in the future manufacturing of advanced energy devices.

2.
Adv Sci (Weinh) ; 10(32): e2305194, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37752831

RESUMEN

Single-atomic transition metal-nitrogen-carbon (M-N-C) structures are promising alternatives toward noble-metal-based catalysts for oxygen reduction reaction (ORR) catalysis involved in sustainable energy devices. The symmetrical electronic density distribution of the M─N4 moieties, however, leads to unfavorable intermediate adsorption and sluggish kinetics. Herein, a Fe-N-C catalyst with electronic asymmetry induced by one nearest carbon vacancy adjacent to Fe─N4 is conceptually produced, which induces an optimized d-band center, lowered free energy barrier, and thus superior ORR activity with a half-wave potential (E1/2 ) of 0.934 V in a challenging acidic solution and 0.901 V in an alkaline solution. When assembled as the cathode of a Zinc-air battery (ZAB), a peak power density of 218 mW cm-2 and long-term durability up to 200 h are recorded, 1.5 times higher than the noble metal-based Pt/C+RuO2 catalyst. This work provides a new strategy on developing efficient M-N-C catalysts and offers an opportunity for the real-world application of fuel cells and metal-air batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...