Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2296, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485971

RESUMEN

The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Single electrons have been adiabatically transported while confined to a moving quantum dot in short, all-electrical Si/SiGe shuttle device, called quantum bus (QuBus). Here we show a QuBus spanning a length of 10 µm and operated by only six simply-tunable voltage pulses. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 µm) is (99.7 ± 0.3) %. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in 28Si/SiGe, promises long-range spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.

2.
Nat Commun ; 15(1): 1325, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351007

RESUMEN

Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7% for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 µm, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon.

3.
J Phys Condens Matter ; 31(41): 415701, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31272091

RESUMEN

We measure the evolution of low temperature photoluminescence in a WSe2 monolayer with increasing electron concentration level. By comparing non-resonant and resonant laser excitation, we find that the formation of negative trions is facilitated by very efficient phonon emission. The most prominent line in photolumienscence spectra in the intermediate range of carrier concentrations (below [Formula: see text] cm-2) is found to be 66 meV below the bright negative trion. Its measured properties, including low oscillator strength and the temperature dependence point to an interacting bright intervalley and dark intervalley trion state as the origin of the line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA