Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IMA Fungus ; 13(1): 16, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100951

RESUMEN

In the present study, we assembled and analyzed the mitogenomes of two Ramaria species. The assembled mitogenomes of Ramaria cfr. rubripermanens and R. rubella were circularized, with sizes of 126,497 bp and 143,271 bp, respectively. Comparative mitogenome analysis showed that intron region contributed the most (contribution rate, 43.74%) to the size variations of Ramaria mitogenomes. The genetic contents, gene length, tRNAs, and codon usages of the two Ramaria mitogenomes varied greatly. In addition, the evolutionary rates of different core protein coding genes (PCGs) in Phallomycetidae mitogenomes varied. We detected large-scale gene rearrangements between Phallomycetidae mitogenomes, including gene displacement and tRNA doubling. A total of 4499 bp and 7746 bp aligned fragments were detected between the mitochondrial and nuclear genomes of R. cfr. rubripermanens and R. rubella, respectively, indicating possible gene transferring events. We further found frequent intron loss/gain and potential intron transfer events in Phallomycetidae mitogenomes during the evolution, and the mitogenomes of R. rubella contained a novel intron P44. Phylogenetic analyses using both Bayesian inference (BI) and Maximum Likelihood (ML) methods based on a combined mitochondrial gene dataset obtained an identical and well-supported phylogenetic tree for Basidiomycota, wherein R. cfr. rubripermanens and Turbinellus floccosus are sister species. This study served as the first report on mitogenomes from the genus Ramaria, which provides a basis for understanding the evolution, genetics, and taxonomy of this important fungal group.

2.
Environ Pollut ; 313: 120184, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113644

RESUMEN

Soil pollution has become a real threat to mankind in the 21st century. On the one hand, soil pollution has reduced the world's arable land area, resulting in the contradiction between the world's population expansion and the shortage of arable land. On the other hand, soil pollution has seriously disrupted the soil ecological balance and significantly affected the biodiversity in the soil. Soil pollutants may further affect the survival, reproduction and health of humans and other organisms through the food chain. Several studies have suggested that biochar has the potential to act as a soil conditioner and to promote crop growth, and is widely used to remove environmental pollutants. Biochar modified by physical, chemical, and biological methods will affect the treatment efficiency of soil pollution, soil quality, soil ecology and interaction with organisms, especially with microorganisms. Therefore, in this review, we summarized several main biochar modification methods and the mechanisms of the modification and introduced the effects of the application of modified biochar to soil pollutant control, soil ecological regulation and soil nutrient regulation. We also introduced some case studies for the development of modified biochars suitable for different soil conditions, which plays a guiding role in the future development and application of modified biochar. In general, this review provides a reference for the green treatment of different soil pollutants by modified biochar and provides data support for the sustainable development of agriculture.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Carbón Orgánico , Contaminación Ambiental/prevención & control , Humanos , Suelo/química , Contaminantes del Suelo/química
3.
Front Microbiol ; 13: 919044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783408

RESUMEN

Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.

4.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893149

RESUMEN

Ganoderma species are widely distributed in the world with high diversity. Some species are considered to be pathogenic fungi while others are used as traditional medicine in Asia. In this study, we sequenced and assembled four Ganoderma complete mitogenomes, including G. subamboinense s118, G. lucidum s37, G. lingzhi s62, and G. lingzhi s74. The sizes of the four mitogenomes ranged from 50,603 to 73,416 bp. All Ganoderma specimens had a full set of core protein-coding genes (PCGs), and the rps3 gene of Ganoderma species was detected to be under positive or relaxed selection. We found that the non-conserved PCGs, which encode RNA polymerases, DNA polymerases, homing endonucleases, and unknown functional proteins, are dynamic within and between Ganoderma species. Introns were thought to be the main contributing factor in Ganoderma mitogenome size variation (p < 0.01). Frequent intron loss/gain events were detected within and between Ganoderma species. The mitogenome of G. lucidum s26 gained intron P637 in the cox3 gene compared with the other two G. lucidum mitogenomes. In addition, some rare introns in Ganoderma were detected in distinct Basidiomycetes, indicating potential gene transfer events. Comparative mitogenomic analysis revealed that gene arrangements also varied within and between Ganoderma mitogenomes. Using maximum likelihood and Bayesian inference methods with a combined mitochondrial gene dataset, phylogenetic analyses generated identical, well-supported tree topologies for 71 Agaricomycetes species. This study reveals intraspecific and interspecific variations of the Ganoderma mitogenomes, which promotes the understanding of the origin, evolution, and genetic diversity of Ganoderma species.

5.
IMA Fungus ; 13(1): 7, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501936

RESUMEN

In the present study, two mitogenomes from the Filobasidium genus were assembled and compared with other Tremellomycetes mitogenomes. The mitogenomes of F. wieringae and F. globisporum both comprised circular DNA molecules, with sizes of 27,861 bp and 71,783 bp, respectively. Comparative mitogenomic analysis revealed that the genetic contents, tRNAs, and codon usages of the two Filobasidium species differed greatly. The sizes of the two Filobasidium mitogenomes varied greatly with the introns being the main factor contributing to mitogenome expansion in F. globisporum. Positive selection was observed in several protein-coding genes (PCGs) in the Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina species, including cob, cox2, nad2, and rps3 genes. Frequent intron loss/gain events were detected to have occurred during the evolution of the Tremellomycetes mitogenomes, and the mitogenomes of 17 species from Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina have undergone large-scale gene rearrangements. Phylogenetic analyses based on Bayesian inference and the maximum likelihood methods using a combined mitochondrial gene set generated identical and well-supported phylogenetic trees, wherein Filobasidium species had close relationships with Trichosporonales species. This study, which is the first report on mitogenomes from the order Filobasidiales, provides a basis for understanding the genomics, evolution, and taxonomy of this important fungal group.

6.
Sci Total Environ ; 838(Pt 2): 156196, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623536

RESUMEN

Phosphate mining releases heavy metals into the surrounding environment. In this study, the effects of phosphate mining on rhizosphere soil fungi in surrounding crops, including Lactuca sativa var. angustata, Glycine max (L.) Merr., and Triticum aestivum L., were assessed. Phosphate mining significantly reduced the crop rhizosphere fungal diversity (P < 0.05). The relative abundances of Fusarium and Epicoccum increased in mining rhizosphere soil compared with the baseline. Beta diversity analysis indicated that phosphate mining led to the differentiation of fungal community structure in plant rhizospheres. Guild analysis indicated that different plant rhizosphere fungi developed various guilds in response to phosphate mining stress. Nine fungi were isolated from soil samples, with solubilization index values ranging from 1.1 to 2.5. Two efficient phosphate solubilizers, Epicoccum nigrum and Fusarium verticillioides, were enriched in phosphate mining rhizosphere soil samples. The dissolution kinetics of inorganic phosphorus and alkaline phosphatase activity assay showed strong phosphorus dissolution ability of the isolated fungi. Penicillium aculeatum, Trichoderma harzianum, Chaetomium globosum, and F. verticillioides showed strong tolerance to multiple heavy metals. This study furthers our understanding of how rhizosphere fungal ecology is affected by phosphate mining and provides important resources for the remediation of phosphate mining soil pollution.


Asunto(s)
Metales Pesados , Micobioma , Hongos , Metales Pesados/análisis , Minería , Fosfatos/análisis , Fósforo/análisis , Raíces de Plantas/microbiología , Rizosfera , Suelo/química , Microbiología del Suelo
7.
Environ Sci Pollut Res Int ; 29(24): 35501-35517, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35226261

RESUMEN

Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cromo/análisis , Política Ambiental , Humanos , Suelo
8.
Sci Total Environ ; 821: 153479, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092784

RESUMEN

The effects of phosphate mining on rhizosphere bacteria in surrounding vegetables and crops, including Lactuca sativa, Glycine max, and Triticum aestivum, are assessed in this study. As results, phosphate mining significantly increased the contents of some large elements, trace elements, and heavy metals in the surrounding agricultural soil, including phosphorus, magnesium, boron, cadmium, lead, arsenic, zinc, and chromium (P < 0.05). The community richness and diversity of bacteria in rhizosphere of the three crops were significantly reduced by phosphate mining (P < 0.05). Abundances of Sphingomonas and RB41 in the rhizosphere soil of phosphate mining area improved compared with the baseline in the non-phosphate mining area. Beta diversity analysis indicated that phosphate mining led to the differentiation of bacterial community structure in plant rhizospheres. Bacterial metabolic analysis indicated that different plant rhizosphere microbial flora developed various metabolic strategies in response to phosphate mining stress, including enriching unsaturated fatty acids, antibiological transport systems, cold shock proteins, etc. This study reveals the interaction between crops, rhizosphere bacteria, and soil pollutants. Select differentiated microbial strains suitable for specific plant rhizosphere environments are necessary for agricultural soil remediation. Additionally, the problem of destruction of agricultural soil and microecology caused by phosphate mining must be solved.


Asunto(s)
Rizosfera , Contaminantes del Suelo , Bacterias , Productos Agrícolas/microbiología , Minería , Fosfatos , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Verduras
9.
Front Bioeng Biotechnol ; 9: 726126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604186

RESUMEN

The compounds 5-aminovalerate and δ-valerolactam are important building blocks that can be used to synthesize bioplastics. The production of 5-aminovalerate and δ-valerolactam in microorganisms provides an ideal source that reduces the cost. To achieve efficient biobased coproduction of 5-aminovalerate and δ-valerolactam in Escherichia coli, a single biotransformation step from L-lysine was constructed. First, an equilibrium mixture was formed by L-lysine α-oxidase RaiP from Scomber japonicus. In addition, by adjusting the pH and H2O2 concentration, the titers of 5-aminovalerate and δ-valerolactam reached 10.24 and 1.82 g/L from 40 g/L L-lysine HCl at pH 5.0 and 10 mM H2O2, respectively. With the optimized pH value, the δ-valerolactam titer was improved to 6.88 g/L at pH 9.0 with a molar yield of 0.35 mol/mol lysine. The ratio of 5AVA and δ-valerolactam was obviously affected by pH value. The ratio of 5AVA and δ-valerolactam could be obtained in the range of 5.63:1-0.58:1 at pH 5.0-9.0 from the equilibrium mixture. As a result, the simultaneous synthesis of 5-aminovalerate and δ-valerolactam from L-lysine in Escherichia coli is highly promising. To our knowledge, this result constitutes the highest δ-valerolactam titer reported by biological methods. In summary, a commercially implied bioprocess developed for the coproduction of 5-aminovalerate and δ-valerolactam using engineered Escherichia coli.

10.
Mitochondrial DNA B Resour ; 6(10): 2803-2805, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34514133

RESUMEN

Leucoagaricus naucinus (Fr.) Singer is a mycorrhizal fungus widely distributed in the northern Hemisphere. In the present study, the complete mitochondrial genome of Leucoagaricus naucinus was sequenced, assembled, and annotated. The L. naucinus mitochondrial genome was composed of circular DNA molecules, with the total size of 61,434 bp. The GC content of the L. naucinus mitochondrial genome was 26.07%. A total of 30 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 26 transfer RNA (tRNA) genes were detected in the L. naucinus mitochondrial genome. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the L. naucinus exhibited a close relationship with Agaricus bisporus.

11.
Mitochondrial DNA B Resour ; 6(8): 2355-2357, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34350345

RESUMEN

In the present study, we assembled and annotated the complete mitochondrial genome of Chroogomphus rutilus. The complete mitochondrial genome of C. rutilus was composed of circular DNA molecules, with a size of 37,508 bp. The GC content of the C. rutilus mitogenome was 22.82%. A total of 18 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes were detected in the C. rutilus mitogenome. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the C. rutilus exhibited a close relationship with species from the genus Rhizopogon. This study served as the first report on the complete mitochondrial genome from the family Gomphidiaceae, which will promote the understanding of phylogeny, evolution, and taxonomy of this important fungal species.

12.
Front Microbiol ; 12: 646567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122362

RESUMEN

In this study, the mitogenome of Hannaella oryzae was sequenced by next-generation sequencing (NGS) and successfully assembled. The H. oryzae mitogenome comprised circular DNA molecules with a total size of 26,444 bp. We found that the mitogenome of H. oryzae partially deleted the tRNA gene transferring cysteine. Comparative mitogenomic analyses showed that intronic regions were the main factors contributing to the size variations of mitogenomes in Tremellales. Introns of the cox1 gene in Tremellales species were found to have undergone intron loss/gain events, and introns of the H. oryzae cox1 gene may have different origins. Gene arrangement analysis revealed that H. oryzae contained a unique gene order different from other Tremellales species. Phylogenetic analysis based on a combined mitochondrial gene set resulted in identical and well-supported topologies, wherein H. oryzae was closely related to Tremella fuciformis. This study represents the first report of mitogenome for the Hannaella genus, which will allow further study of the population genetics, taxonomy, and evolutionary biology of this important phylloplane yeast and other related species.

13.
Biochem Biophys Res Commun ; 552: 170-175, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751934

RESUMEN

Biobased production of 5-aminovalerate (5AVA) from biomass can support a sustainable and economic biorefinery process to produce bio-based nylon 5 for food packaging materials. Cost-competitive production of 5AVA from biomass is a key factor in the successful commercialization of nylon 5. Bioproduction of 5AVA is a promising candidate for the industrial process to the current petrochemical route. In this study, we developed an artificial 2-keto-6-aminocaproate-mediated pathway for cost-competitive and high efficiency production of 5AVA in engineered Escherichia coli. Firstly, the combination of native l-lysine α-oxidase (RaiP) from Scomber japonicas, α-ketoacid decarboxylase (KivD) from Lactococcus lactis and aldehyde dehydrogenase (PadA) from Escherichia coli could efficiently convert l-lysine into 5AVA. Moreover, the engineered strains ML03-PnirB-RKP, ML03-PPL-PR-RKP, ML03-PM1-93-RKP induced by anaerobic condition, temperature-induced, constitutive expression instead of expensive isopropyl ß-D-thiogalactoside were constructed, respectively. The use of nirB promoter induced by anaerobic condition not only could attain a higher titer of 5AVA than PL-PR and M1-93 promoters, but omit cost of expensive exogenous inducers. After the replacement of industrial materials, 5AVA titer successfully reached 33.68 g/L in engineered strain ML03-PnirB-RKP via biotransformation. This biotransformation process conduces to the cosmically industrial 5AVA bioproduction.


Asunto(s)
Aminoácidos Neutros/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ingeniería Metabólica/métodos , Nitrito Reductasas/genética , Regiones Promotoras Genéticas/genética , Anaerobiosis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbiología Industrial/métodos , Nitrito Reductasas/metabolismo , Reproducibilidad de los Resultados
14.
Front Genet ; 12: 534871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659021

RESUMEN

The genus of Tricholoma is a group of important ectomycorrhizal fungi. The overlapping of morphological characteristics often leads to the confusion of Tricholoma species classification. In this study, the mitogenomes of five Tricholoma species were sequenced based on the next-generation sequencing technology, including T. matsutake SCYJ1, T. bakamatsutake, T. terreum, T. flavovirens, and T. saponaceum. These five mitogenomes were all composed of circular DNA molecules, with sizes ranging from 49,480 to 103,090 bp. Intergenic sequences were considered to be the main factor contributing to size variations of Tricholoma mitogenomes. Comparative mitogenomic analysis showed that the introns of the Agaricales mitogenome experienced frequent loss/gain events. In addition, potential gene transfer was detected between the mitochondrial and nuclear genomes of the five species of Tricholoma. Evolutionary analysis showed that the rps3 gene of the Tricholoma species was under positive selection or relaxed selection in the evolutionary process. In addition, large-scale gene rearrangements were detected between some Tricholoma species. Phylogenetic analysis using the Bayesian inference and maximum likelihood methods based on a combined mitochondrial gene set yielded identical and well-supported tree topologies. This study promoted the understanding of the genetics, evolution, and phylogeny of the Tricholoma genus and related species.

15.
Front Bioeng Biotechnol ; 9: 633028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634090

RESUMEN

Bioproduction of 5-aminovalerate (5AVA) from renewable feedstock can support a sustainable biorefinery process to produce bioplastics, such as nylon 5 and nylon 56. In order to achieve the biobased production of 5AVA, a 2-keto-6-aminocaproate-mediated synthetic pathway was established. Combination of L-Lysine α-oxidase from Scomber japonicus, α-ketoacid decarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli could achieve the biosynthesis of 5AVA from biobased L-Lysine in E. coli. The H2O2 produced by L-Lysine α-oxidase was decomposed by the expression of catalase KatE. Finally, 52.24 g/L of 5AVA were obtained through fed-batch biotransformation. Moreover, homology modeling, molecular docking and molecular dynamic simulation analyses were used to identify mutation sites and propose a possible trait-improvement strategy: the expanded catalytic channel of mutant and more hydrogen bonds formed might be beneficial for the substrates stretch. In summary, we have developed a promising artificial pathway for efficient 5AVA synthesis.

16.
Int J Biol Macromol ; 172: 560-572, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476615

RESUMEN

In the present study, eleven novel complete mitogenomes of Boletus were assembled and compared. The eleven complete mitogenomes were all composed of circular DNA molecules, with sizes ranging from 32,883 bp to 48,298 bp. The mitochondrial gene arrangement of Boletus varied greatly from other Boletales mitogenomes, and gene position reversal were observed frequently in the evolution of Boletus. Across the 15 core protein-coding genes (PCGs) tested, atp9 had the least and rps3 had the largest genetic distances among the eleven Boletus species, indicating varied evolution rates of core PCGs. In addition, the Ka/Ks value for nad3 gene was >1, suggesting that this gene was subject to possible positive selection pressure. Comparative mitogenomic analysis indicated that the intronic region was significantly correlated with the size of mitogenomes in Boletales. Two large-scale intron loss events were detected in the evolution of Boletus. Phylogenetic analyses based on a combined mitochondrial gene dataset yielded a well-supported (BPP ≥ 0.99; BS =100) phylogenetic tree for 72 Agaricomycetes, and the Boletus species had a close relationship with Paxillus. This study served as the first report on complete mitogenomes in Boletus, which will further promote investigations of the genetics, evolution and phylogeny of the Boletus genus.


Asunto(s)
Basidiomycota/genética , Proteínas Fúngicas/genética , Genoma Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/genética , Micorrizas/genética , Secuencia de Aminoácidos , Basidiomycota/clasificación , Basidiomycota/metabolismo , Evolución Biológica , Exones , Bosques , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Tamaño del Genoma , Intrones , Mitocondrias/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/metabolismo , Micorrizas/clasificación , Micorrizas/metabolismo , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Árboles/microbiología
17.
Comput Struct Biotechnol J ; 19: 401-414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33489009

RESUMEN

The order Boletales is a group of fungi with complex life styles, which include saprophytic and ectomycorrhizal mushroom-forming fungi. In the present study, the complete mitogenomes of two saprophytic Boletales species, Coniophora olivacea, and C. puteana, were assembled and compared with mitogenomes of ectomycorrhizal Boletales. Both mitogenomes comprised circular DNA molecules with sizes of 78,350 bp and 79,655 bp, respectively. Comparative mitogenomic analysis indicated that the two saprophytic Boletales species contained more plasmid-derived (7 on average) and unknown functional genes (12 on average) than the four ectomycorrhizal Boletales species previously reported. In addition, the core protein coding genes, nad2 and rps3, were found to be subjected to positive selection pressure between some Boletales species. Frequent intron gain/loss events were detected in Boletales and Basidiomycetes, and several novel intron classes were found in two Coniophora species. A total of 33 introns were detected in C. olivacea, and most were found to have undergone contraction in the C. olivacea mitogenome. Mitochondrial genes of Coniophora species were found to have undergone large-scale gene rearrangements, and the accumulation of intra-genomic repeats in the mitogenome was considered as one of the main contributing factors. Based on combined mitochondrial gene sets, we obtained a well-supported phylogenetic tree for 76 Basidiomycetes, demonstrating the utility of mitochondrial gene analysis for inferring Basidiomycetes phylogeny. The study served as the first report on the mitogenomes of the family Coniophorineae, which will help to understand the origin and evolution patterns of Boletales species with complex lifestyles.

18.
Front Microbiol ; 11: 591453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362740

RESUMEN

In the present study, the mitogenome of Tuber calosporum was assembled and analyzed. The mitogenome of T. calosporum comprises 15 conserved protein-coding genes, two rRNA genes, and 14 tRNAs, with a total size of 287,403 bp. Fifty-eight introns with 170 intronic open reading frames were detected in the T. calosporum mitogenome. The intronic region occupied 69.41% of the T. calosporum mitogenome, which contributed to the T. calosporum mitogenome significantly expand relative to most fungal species. Comparative mitogenomic analysis revealed large-scale gene rearrangements occurred in the mitogenome of T. calosporum, involving gene relocations and position exchanges. The mitogenome of T. calosporum was found to have lost several tRNA genes encoding for cysteine, aspartate, histidine, etc. In addition, a pair of fragments with a total length of 32.91 kb in both the nuclear and mitochondrial genomes of T. calosporum was detected, indicating possible gene transfer events. A total of 12.83% intragenomic duplications were detected in the T. calosporum mitogenome. Phylogenetic analysis based on mitochondrial gene datasets obtained well-supported tree topologies, indicating that mitochondrial genes could be reliable molecular markers for phylogenetic analyses of Ascomycota. This study served as the first report on mitogenome in the family Tuberaceae, thereby laying the groundwork for our understanding of the evolution, phylogeny, and population genetics of these important ectomycorrhizal fungi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...