Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Article En | MEDLINE | ID: mdl-38686544

Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.

2.
Cells ; 13(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38334631

We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.


Cholecalciferol , Receptors, Calcitriol , Humans , Cholecalciferol/pharmacology , Receptors, Calcitriol/metabolism , Receptors, Retinoic Acid , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Fibroblasts/metabolism , Collagen , Tretinoin
4.
J Steroid Biochem Mol Biol ; 233: 106368, 2023 10.
Article En | MEDLINE | ID: mdl-37495192

Vitamin D is found in two forms in humans, D3 produced in the skin and D2 solely from the diet. Both 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) are oxidised and inactivated by CYP24A1, a tightly regulated mitochondrial enzyme that controls serum levels of these secosteroids. The pathways of oxidation of 25(OH)D2 and 1,25(OH)2D2, particularly 25(OH)D2, by human CYP24A1 are not well characterized. The aim of this study was to further elucidate these pathways, and to compare the kinetics of metabolism of 25(OH)D2 and 1,25(OH)2D2 with their vitamin D3 counterparts. We used expressed and partially purified human CYP24A1 with substrates dissolved in the membrane of phospholipid vesicles, to mimic the inner mitochondrial membrane. We found that the major pathways for side chain oxidation of 25(OH)D2 and 1,25(OH)2D2 were identical and that predominant intermediates of 25(OH)D2 metabolism could be converted to the corresponding intermediates in the pathway of 1,25(OH)2D2 oxidation by 1α-hydroxylation by CYP27B1. The initial steps in the CYP24A1-mediated oxidation involved hydroxylation at the C24R position, and another unknown position where the alcohol was oxidised to an aldehyde. The 24R-hydroxylation was followed by hydroxylation at C26 or C28, or cleavage between C24 and C25 to produce the 24-oxo-25,26,27-trinor derivative. All of these products were further oxidised, with 24-oxo-25,26,27-trinor-1(OH)D2 giving a product tentatively identified as 24-oxo-25,26,27-trinor-1,28(OH)2D2. The catalytic efficiency (kcat/Km) of CYP24A1 for initial 25(OH)D2 hydroxylation was similar to that for 25(OH)D3, indicating that they have similar rates of inactivation at low substrate concentrations, supporting that vitamins D2 and D3 are equally effective in maintaining serum 25(OH)D concentrations. In contrast, the kcat/Km value for 1,25(OH)2D3 was almost double that for 1,25(OH)2D2 indicating a lower rate of inactivation of 1,25(OH)2D2 at a low substrate concentration, suggesting that it has increased metabolic stability in vivo.


Vitamin D , Humans , Calcifediol/metabolism , Cholecalciferol/metabolism , Ergocalciferols , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism
5.
J Steroid Biochem Mol Biol ; 233: 106370, 2023 10.
Article En | MEDLINE | ID: mdl-37499840

Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.


Cholesterol Side-Chain Cleavage Enzyme , Ergosterol , Humans , Ergosterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Hydroxylation , Mass Spectrometry , Ergocalciferols , Cholestanetriol 26-Monooxygenase/metabolism
6.
J Steroid Biochem Mol Biol ; 227: 106229, 2023 03.
Article En | MEDLINE | ID: mdl-36455719

25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.


Calcifediol , Cholesterol Side-Chain Cleavage Enzyme , Humans , Rats , Animals , Calcifediol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Sulfates , Cholecalciferol/metabolism , Vitamin D , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/metabolism , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism
7.
Int J Oncol ; 61(2)2022 08.
Article En | MEDLINE | ID: mdl-35775377

Hydroxyderivatives of vitamin D3, including classical 1,25(OH)2D3 and novel CYP11A1­derived hydroxyderivatives, exert their biological activity by acting as agonists on the vitamin D receptor (VDR) and inverse agonists on retinoid­related orphan receptors (ROR)α and γ. The anticancer activities of CYP11A1­derived hydroxyderivatives were tested using cell biology, tumor biology and molecular biology methods in human A431 and SCC13 squamous (SCC)­ and murine ASZ001 basal (BCC)­cell carcinomas, in comparison with classical 1,25(OH)2D3. Vitamin D3­hydroxyderivatives with or without a C1α(OH) inhibited cell proliferation in a dose­dependent manner. While all the compounds tested had similar effects on spheroid formation by A431 and SCC13 cells, those with a C1α(OH) group were more potent in inhibiting colony and spheroid formation in the BCC line. Potent anti­tumorigenic activity against the BCC line was exerted by 1,25(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3, with smaller effects seen for 25(OH)D3, 20(OH)D3 and 20,23(OH)2D3. 1,25(OH)2D3, 1,20(OH)2D3 and 20(OH)D3 inhibited the expression of GLI1 and ß­catenin in ASZ001 cells. In A431 cells, these compounds also decreased the expression of GLI1 and stimulated involucrin expression. VDR, RORγ, RORα and CYP27B1 were detected in A431, SCC13 and ASZ001 lines, however, with different expression patterns. Immunohistochemistry performed on human skin with SCC and BCC showed nuclear expression of all three of these receptors, as well as megalin (transmembrane receptor for vitamin D­binding protein), the level of which was dependent on the type of cancer and antigen tested in comparison with normal epidermis. Classical and CYP11A1­derived vitamin D3­derivatives exhibited anticancer­activities on skin cancer cell lines and inhibited GLI1 and ß­catenin signaling in a manner that was dependent on the position of hydroxyl groups. The observed expression of VDR, RORγ, RORα and megalin in human SCC and BCC suggested that they might provide targets for endogenously produced or exogenously applied vitamin D hydroxyderivatives and provide excellent candidates for anti­cancer therapy.


Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Cholesterol Side-Chain Cleavage Enzyme , Vitamin D , Animals , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cholecalciferol/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/pharmacology , Humans , Low Density Lipoprotein Receptor-Related Protein-2 , Mice , Receptors, Calcitriol/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Zinc Finger Protein GLI1/genetics , beta Catenin/metabolism
8.
FASEB J ; 36(8): e22451, 2022 08.
Article En | MEDLINE | ID: mdl-35838947

CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and ß, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .


Cholecalciferol , PPAR gamma , Receptors, Calcitriol , Activation, Metabolic , Cholecalciferol/analogs & derivatives , Cholecalciferol/metabolism , Cholecalciferol/pharmacokinetics , Humans , Liver X Receptors/metabolism , Molecular Docking Simulation , PPAR gamma/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Calcitriol/metabolism
9.
Int J Biol Macromol ; 209(Pt A): 1111-1123, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35421413

To better understand the molecular and structural basis underlying the interaction of vitamin D3 hydroxyderivatives with AhR, molecular simulation was used to probe the binding of 1,20(OH)2D3, 1,25(OH)2D3, 20,23(OH)2D3 and 20(OH)D3 to AhR. qPCR showed that vitamin D3 derivatives stimulate expression of cyp1A1 and cyp1B1 genes that are downstream targets of AhR signaling. These secosteroids stimulated the translocation of the AhR to the nucleus, as measured by flow cytometry and western blotting. Molecular dynamics simulations were used to model the binding of vitamin D3 derivatives to AhR to examine their influence on the structure, conformation and dynamics of the AhR ligand binding domain (LBD). Binding thermodynamics, conformation, secondary structure, dynamical motion and electrostatic potential of AhR were analyzed. The molecular docking scores and binding free energy were all favorable for the binding of D3 derivatives to the AhR. These established ligands and the D3 derivatives are predicted to have different patterns of hydrogen bond formation with the AhR, and varied residue conformational fluctuations and dynamical motion for the LBD. These changes could alter the shape, size and electrostatic potential distribution of the ligand binding pocket, contributing to the different binding affinities of AhR for the natural ligands and D3 derivatives.


Cholecalciferol , Receptors, Aryl Hydrocarbon , Cholecalciferol/chemistry , Ligands , Molecular Docking Simulation , Protein Structure, Secondary , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
10.
Bioorg Chem ; 121: 105660, 2022 04.
Article En | MEDLINE | ID: mdl-35168121

New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.


Cholesterol Side-Chain Cleavage Enzyme , Vitamins , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Humans , Receptors, Calcitriol/metabolism , Receptors, Cytoplasmic and Nuclear , Vitamin D/metabolism
11.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article En | MEDLINE | ID: mdl-34948139

Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1-/- deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.


Arthritis, Experimental/metabolism , Calcifediol/analogs & derivatives , Calcitriol/pharmacology , Receptors, Immunologic/biosynthesis , T-Lymphocytes/metabolism , Up-Regulation/drug effects , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Calcifediol/pharmacology , Mice , Mice, Knockout , Receptors, Immunologic/genetics , T-Lymphocytes/pathology
12.
Cancers (Basel) ; 13(13)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206371

Vitamin D3 is not only involved in calcium and phosphate metabolism in humans, but it can also affect proliferation and differentiation of normal and cancer cells, including melanoma. The mechanism of the anti-cancer action of vitamin D3 is not fully understood. The nuclear vitamin D receptor (VDR) is crucial for the phenotypic effects of vitamin D hydroxyderivatives. VDR expression shows an inverse correlation with melanoma progression and poor outcome of the disease. In this study we knocked out the VDR in a human melanoma cell line using CRISPR methodology. This enhanced the proliferation of melanoma cells grown in monolayer culture, spheroids or colonies and their migration. Activated forms of vitamin D, including classical 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while VDR KO cells showed a degree of resistance to their action. These results indicate that expression of VDR is important for the inhibition of melanoma growth induced by activated forms of vitamin D. In conclusion, based on our previous clinicopathological analyses and the current study, we suggest that the VDR can function as a melanoma tumor suppressor gene.

13.
Front Immunol ; 12: 678487, 2021.
Article En | MEDLINE | ID: mdl-34276665

The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.


Anti-Inflammatory Agents/pharmacology , Arthritis/etiology , Arthritis/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Calcifediol/analogs & derivatives , Animals , Arthritis/drug therapy , Arthritis/pathology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/pathology , Biomarkers , Calcifediol/pharmacology , Cytokines/metabolism , Disease Management , Disease Models, Animal , Duration of Therapy , Humans , Lymphocyte Count , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Treatment Outcome
14.
Am J Physiol Endocrinol Metab ; 321(2): E246-E251, 2021 08 01.
Article En | MEDLINE | ID: mdl-34181461

Vitamin D deficiency significantly correlates with the severity of SARS-CoV-2 infection. Molecular docking-based virtual screening studies predict that novel vitamin D and related lumisterol hydroxymetabolites are able to bind to the active sites of two SARS-CoV-2 transcription machinery enzymes with high affinity. These enzymes are the main protease (Mpro) and RNA-dependent RNA polymerase (RdRP), which play important roles in viral replication and establishing infection. Based on predicted binding affinities and specific interactions, we identified 10 vitamin D3 (D3) and lumisterol (L3) analogs as likely binding partners of SARS-CoV-2 Mpro and RdRP and, therefore, tested their ability to inhibit these enzymes. Activity measurements demonstrated that 25(OH)L3, 24(OH)L3, and 20(OH)7DHC are the most effective of the hydroxymetabolites tested at inhibiting the activity of SARS-CoV-2 Mpro causing 10%-19% inhibition. These same derivatives as well as other hydroxylumisterols and hydroxyvitamin D3 metabolites inhibited RdRP by 50%-60%. Thus, inhibition of these enzymes by vitamin D and lumisterol metabolites may provide a novel approach to hindering the SARS-CoV-2 infection.NEW & NOTEWORTHY Active forms of vitamin D and lumisterol can inhibit SARS-CoV-2 replication machinery enzymes, which indicates that novel vitamin D and lumisterol metabolites are candidates for antiviral drug research.


Antiviral Agents/pharmacology , Ergosterol/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Virus Replication/drug effects , Vitamin D/pharmacology , Antiviral Agents/chemistry , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Ergosterol/pharmacology , Molecular Docking Simulation , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/physiology , Vitamin D/chemistry
15.
J Steroid Biochem Mol Biol ; 212: 105929, 2021 09.
Article En | MEDLINE | ID: mdl-34098080

7-Dehydrocholesterol reductase (DHCR7) catalyses the final step of cholesterol biosynthesis in the Kandutsch-Russel pathway, the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. 7DHC can be acted on by a range of other enzymes including CYP27A1 and CYP11A1, as well as by UVB radiation, producing a number of derivatives including hydroxy-metabolites, some of which retain the C7-C8 double bond and are biologically active. These metabolites include lumisterol (L3) which is a stereoisomer of 7DHC produced in the skin by UVB radiation of 7DHC, as well as vitamin D3. The aim of this study was to test whether these metabolites could act as substrates or inhibitors of DHCR7 in rat liver microsomes. To initially screen the ability of these metabolites to interact with the active site of DHCR7, their ability to inhibit the conversion of ergosterol to brassicasterol was measured. Sterols that significantly inhibited this reaction included 7DHC (as expected), 20S(OH)7DHC, 27(OH)DHC, 8DHC, 20S(OH)L3 and 22(OH)L3 but not 7-dehydropregnenolone (7DHP), 25(OH)7DHC, L3 or vitamin D3 and its hydroxyderivatives. Sterols that inhibited ergosterol reduction were directly tested as substrates for DHCR7. 20S(OH)7DHC, 27(OH)DHC and 7-dehydrodesmosterol were confirmed to be substrates, giving the expected product with the C7-C8 double bond removed. No products were observed from 8DHC or 20S(OH)L3 indicating that these sterols are inhibitors and not substrates of DHCR7. The resistance of lumisterol and 7DHP to reduction by DHCR7 in cells will permit other enzymes to metabolise these sterols to their active forms retaining the C7-C8 double bond, conferring specificity to their biological actions.


Dehydrocholesterols/metabolism , Ergosterol/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Cholecalciferol/metabolism , Microsomes, Liver/metabolism , Rats, Wistar , Vitamins/metabolism
16.
Clin Chem Lab Med ; 59(10): 1642-1652, 2021 09 27.
Article En | MEDLINE | ID: mdl-34013677

OBJECTIVES: Clinical evaluation of vitamin D status is conventionally performed by measuring serum levels of a single vitamin D metabolite, 25-hydroxyvitamin D predominantly by immunoassay methodology. However, this neglects the complex metabolic pathways involved in vitamin D bioactivity, including two canonical forms D3 and D2, bioactive 1,25-dihydroxy metabolites and inactive 24-hydroxy and other metabolites. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) can measure multiple analytes in a sample during a single run with high sensitivity and reference level specificity. We therefore aimed to develop and validate a LC-MS/MS method to measure simultaneously 13 circulating vitamin D metabolites and apply it to 103 human serum samples. RESULTS: The LC-MS/MS method using a Cookson-type derivatization reagent phenyl-1,2,4-triazoline-3,5-dione (PTAD) quantifies 13 vitamin D metabolites, including mono and dihydroxy-metabolites, as well as CYP11A1-derived D3 and D2 metabolites in a single run. The lower limit of quantitation was 12.5 pg/mL for 1,25(OH)2D3 with accuracy verified by analysis of National Institute of Standards and Technology (NIST) 972a standards. Quantification of seven metabolites (25(OH)D3, 25(OH)D2, 3-epi-25(OH)D3, 20(OH)D3, 24,25(OH)2D3, 1,25(OH)2D3 and 1,20S(OH)2D3) was consistently achieved in human serum samples. CONCLUSIONS: This profiling method can provide new insight into circulating vitamin D metabolite pathways forming the basis for improved understanding of the role of vitamin D in health and disease.


Cholecalciferol , Tandem Mass Spectrometry , Calcifediol , Chromatography, Liquid/methods , Humans , Tandem Mass Spectrometry/methods , Vitamin D , Vitamins
17.
Sci Rep ; 11(1): 8002, 2021 04 13.
Article En | MEDLINE | ID: mdl-33850196

The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and ß revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and ß in LanthaScreen TR-FRET LXRα and ß coactivator assays. The majority of metabolites functioned as LXRα/ß agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRß. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.


Ergosterol/pharmacology , Liver X Receptors/metabolism , Vitamin D/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Animals, Newborn , CHO Cells , Calcitriol , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Computational Biology , Cricetulus , Dermis/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Hydrogen Bonding , Keratinocytes/drug effects , Keratinocytes/metabolism , Ligands , Liver X Receptors/chemistry , Liver X Receptors/genetics , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Secondary , Protein Transport/drug effects , RNA-Seq , Static Electricity , Thermodynamics
18.
ACS Food Sci Technol ; 1(7): 1228-1235, 2021 Aug 20.
Article En | MEDLINE | ID: mdl-35449872

Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.

19.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article En | MEDLINE | ID: mdl-35008794

We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-ß1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-ß1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-ß1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-ß1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.


Dermis/pathology , Ergocalciferols/pharmacology , Fibroblasts/pathology , Scleroderma, Systemic/pathology , Tissue Donors , Bone Morphogenetic Protein 7/metabolism , Cell Line , Collagen Type I, alpha 1 Chain/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Humans , Matrix Metalloproteinase 1 , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Prostaglandin-E Synthases , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
20.
Endocrinology ; 162(1)2021 01 01.
Article En | MEDLINE | ID: mdl-33107570

Previous studies showed that noncalcemic 20(OH)D3, a product of CYP11A1 action on vitamin D3, has antifibrotic activity in human dermal fibroblasts and in a bleomycin mouse model of scleroderma. In this study, we tested the role of retinoic acid-related orphan receptor γ (RORγ), which is expressed in skin, in the action of CYP11A1-derived secosteroids using murine fibroblasts isolated from the skin of wild-type (RORγ +/+), knockout (RORγ -/-), and heterozygote (RORγ +/-) mice. CYP11A1-derived 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3, and 1,20,23(OH)3D3 inhibited proliferation of RORγ +/+ fibroblasts in a dose-dependent manner with a similar potency to 1,25(OH)2D3. Surprisingly, this effect was reversed in RORγ +/- and RORγ -/- fibroblasts, with the most pronounced stimulatory effect seen in RORγ -/- fibroblasts. All analogs tested inhibited TGF-ß1-induced collagen synthesis in RORγ +/+ fibroblasts and the expression of other fibrosis-related genes. This effect was curtailed or reversed in RORγ -/- fibroblasts. These results show that the antiproliferative and antifibrotic activities of the vitamin D hydroxy derivatives are dependent on a functional RORγ. The dramatic changes in the transcriptomes of fibroblasts of RORγ -/- versus wild-type mice following treatment with 20(OH)D3 or 1,20(OH)2D3 provide a molecular basis to explain, at least in part, the observed phenotypic differences.


Cholecalciferol/analogs & derivatives , Cholecalciferol/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Animals , Animals, Newborn , Bleomycin/toxicity , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Drug Tapering , Female , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Scleroderma, Limited
...