Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 14(1): 277, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965230

RESUMEN

The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.


Asunto(s)
Consumo de Bebidas Alcohólicas , Dopamina , Ghrelina , Núcleo Accumbens , Recompensa , Área Tegmental Ventral , Animales , Ghrelina/farmacología , Ghrelina/metabolismo , Masculino , Ratas , Femenino , Dopamina/metabolismo , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Etanol/farmacología , Etanol/administración & dosificación , Humanos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Sprague-Dawley
2.
Int J Tryptophan Res ; 17: 11786469241262876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911967

RESUMEN

Alterations in the composition of the gut microbiota may be causally associated with several brain diseases. Indole-3-propionic acid (IPrA) is a tryptophan-derived metabolite, which is produced by intestinal commensal microbes, rapidly enters the circulation, and crosses the blood-brain barrier. IPrA has neuroprotective properties, which have been attributed to its antioxidant and bioenergetic effects. Here, we evaluate an alternative and/or complementary mechanism, linking IPrA to kynurenic acid (KYNA), another neuroprotective tryptophan metabolite. Adult Sprague-Dawley rats received an oral dose of IPrA (200 mg/kg), and both IPrA and KYNA were measured in plasma and frontal cortex 90 minutes, 6 or 24 hours later. IPrA and KYNA levels increased after 90 minutes and 6 hours (brain IPrA: ~56- and ~7-fold; brain KYNA: ~4- and ~3-fold, respectively). In vivo microdialysis, performed in the medial prefrontal cortex and in the striatum, revealed increased KYNA levels (~2.5-fold) following the administration of IPrA (200 mg/kg, p.o), but IPrA failed to affect extracellular KYNA when applied locally. Finally, treatment with 100 or 350 mg IPrA, provided daily to the animals in the chow for a week, resulted in several-fold increases of IPrA and KYNA levels in both plasma and brain. These results suggest that exogenously supplied IPrA may provide a novel strategy to affect the function of KYNA in the mammalian brain.

3.
Prog Neurobiol ; 236: 102615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641041

RESUMEN

The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.


Asunto(s)
Dopamina , Ingestión de Alimentos , Núcleo Accumbens , Recompensa , Animales , Masculino , Ratones , Péptidos Catiónicos Antimicrobianos , Proteínas Sanguíneas , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología
4.
Acta Neuropsychiatr ; : 1-13, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37592805

RESUMEN

OBJECTIVE: We previously reported that dual injections of lipopolysaccharide (LPS) in mice constitute a valuable tool for investigating the contribution of inflammation to psychotic disorders. The present study investigated how immune activation affects the kynurenine pathway and rat behaviour of relevance for psychotic disorders. METHODS: Male Sprague Dawley rats were treated with either dual injections of LPS (0.5 mg/kg + 0.5 mg/kg, i.p.) or dual injections of saline. Twenty-four hours after the second injection, behavioural tests were carried out, including locomotor activity test, fear conditioning test, spontaneous alternation Y-maze test, and novel object recognition test. In a separate batch of animals, in vivo striatal microdialysis was performed, and tryptophan, kynurenine, quinolinic acid, and kynurenic acid (KYNA) in the dialysate were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: Dual-LPS treatment decreased spontaneous locomotion, exaggerated d-amphetamine-induced locomotor activity, and impaired recognition memory in male Sprague-Dawley rats. In vivo microdialysis showed that dual-LPS treatment elicited metabolic disturbances in the kynurenine pathway with increased extracellular levels of kynurenine and KYNA in the striatum. CONCLUSION: The present study further supports the feasibility of using the dual-LPS model to investigate inflammation-related psychotic disorders and cognitive impairments.

5.
EBioMedicine ; 93: 104642, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295046

RESUMEN

BACKGROUND: Glucagon-like peptide1 receptor (GLP-1R) agonists have been found to reduce alcohol drinking in rodents and overweight patients with alcohol use disorder (AUD). However, the probability of low semaglutide doses, an agonist with higher potency and affinity for GLP-1R, to attenuate alcohol-related responses in rodents and the underlying neuronal mechanisms is unknown. METHODS: In the intermittent access model, we examined the ability of semaglutide to decrease alcohol intake and block relapse-like drinking, as well as imaging the binding of fluorescently marked semaglutide to nucleus accumbens (NAc) in both male and female rats. The suppressive effect of semaglutide on alcohol-induced locomotor stimulation and in vivo dopamine release in NAc was tested in male mice. We evaluated effect of semaglutide on the in vivo release of dopamine metabolites (DOPAC and HVA) and gene expression of enzymes metabolising dopamine (MAOA and COMT) in male mice. FINDINGS: In male and female rats, acute and repeated semaglutide administration reduced alcohol intake and prevented relapse-like drinking. Moreover, fluorescently labelled semaglutide was detected in NAc of alcohol-drinking male and female rats. Further, semaglutide attenuated the ability of alcohol to cause hyperlocomotion and to elevate dopamine in NAc in male mice. As further shown in male mice, semaglutide enhanced DOPAC and HVA in NAc when alcohol was onboard and increased the gene expression of COMT and MAOA. INTERPRETATION: Altogether, this indicates that semaglutide reduces alcohol drinking behaviours, possibly via a reduction in alcohol-induced reward and NAc dependent mechanisms. As semaglutide also decreased body weight of alcohol-drinking rats of both sexes, upcoming clinical studies should test the plausibility that semaglutide reduces alcohol intake and body weight in overweight AUD patients. FUNDING: Swedish Research Council (2019-01676), LUA/ALF (723941) from the Sahlgrenska University Hospital and the Swedish brain foundation.


Asunto(s)
Alcoholismo , Dopamina , Femenino , Ratas , Ratones , Masculino , Animales , Exenatida/farmacología , Dopamina/metabolismo , Ácido 3,4-Dihidroxifenilacético , Sobrepeso , Etanol/efectos adversos , Etanol/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Recurrencia
6.
Transl Psychiatry ; 12(1): 229, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35665740

RESUMEN

Psychotic disorders are currently diagnosed by examining the patient's mental state and medical history. Identifying reliable diagnostic, monitoring, predictive, or prognostic biomarkers would be useful in clinical settings and help to understand the pathophysiology of schizophrenia. Here, we performed an untargeted metabolomics analysis using ultra-high pressure liquid chromatography coupled with time-of-flight mass spectroscopy on cerebrospinal fluid (CSF) and serum samples of 25 patients at their first-episode psychosis (FEP) manifestation (baseline) and after 18 months (follow-up). CSF and serum samples of 21 healthy control (HC) subjects were also analyzed. By comparing FEP and HC groups at baseline, we found eight CSF and 32 serum psychosis-associated metabolites with non-redundant identifications. Most remarkable was the finding of increased CSF serotonin (5-HT) levels. Most metabolites identified at baseline did not differ between groups at 18-month follow-up with significant improvement of positive symptoms and cognitive functions. Comparing FEP patients at baseline and 18-month follow-up, we identified 20 CSF metabolites and 90 serum metabolites that changed at follow-up. We further utilized Ingenuity Pathway Analysis (IPA) and identified candidate signaling pathways involved in psychosis pathogenesis and progression. In an extended cohort, we validated that CSF 5-HT levels were higher in FEP patients than in HC at baseline by reversed-phase high-pressure liquid chromatography. To conclude, these findings provide insights into the pathophysiology of psychosis and identify potential psychosis-associated biomarkers.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Biomarcadores , Humanos , Metabolómica , Trastornos Psicóticos/patología , Serotonina
8.
Front Psychiatry ; 13: 1092828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699502

RESUMEN

Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.

9.
Front Neurosci ; 15: 774050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955726

RESUMEN

There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.

10.
Mol Psychiatry ; 26(11): 6820-6832, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976392

RESUMEN

The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1ß, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , Ácido Quinurénico/metabolismo , Ratones , Trastornos Psicóticos/genética , Trastornos Psicóticos/metabolismo , Esquizofrenia/metabolismo
11.
J Neuroimmunol ; 349: 577401, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33002724

RESUMEN

Immune activation contributes to the pathophysiology of psychiatric disorders. Administration of a single dose of lipopolysaccharides (LPS) has been shown to induce depressive- and anxiety-like behaviors in rodents through activation of the kynurenine pathway, increasing levels of the N-methyl-d-aspartate (NMDA) receptor agonist quinolinic acid. Conversely, repeated administration of LPS produces increased levels of the NMDA receptor antagonist kynurenic acid. Here we show that repeated LPS administration increases sensitivity to D-amphetamine and produces cognitive deficits and anxiety-like behavior. Together, our behavioral data suggests that repeated LPS administration may be useful to study the contribution of inflammation to psychiatric disorders such as schizophrenia.


Asunto(s)
Anfetamina/toxicidad , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Locomoción/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Esquema de Medicación , Sinergismo Farmacológico , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL
12.
Int J Tryptophan Res ; 12: 1178646919891169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31896932

RESUMEN

Kynurenic acid (KYNA), a glial-derived metabolite of tryptophan metabolism, is an antagonist of the alpha 7 nicotinic acetylcholine receptor and the glycine-binding site of N-methyl-d-aspartate (NMDA) receptors. Kynurenic acid levels are increased in both the brain and cerebrospinal fluid of several psychiatric disorders including bipolar disorder, schizophrenia, and Alzheimer disease. In addition, pro-inflammatory cytokines have been found to be elevated in the blood of schizophrenic patients suggesting inflammation may play a role in psychiatric illness. As both pro-inflammatory cytokines and KYNA can be elevated in the brain by peripheral lipopolysaccharide (LPS) injection, we therefore sought to characterize the role of neuroinflammation on learning and memory using a well-described dual-LPS injection model. Mice were injected with an initial injection (0.25 mg/kg LPS, 0.50 mg/kg, or saline) of LPS and then administrated a second injection 16 hours later. Our results indicate both 0.25 and 0.50 mg/kg dual-LPS treatment increased l-kynurenine and KYNA levels in the medial pre-frontal cortex (mPFC). Mice exhibited impaired acquisition of CS+ (conditioned stimulus) Pavlovian conditioning. Notably, mice showed impairment in reference memory while working memory was normal in an 8-arm maze. Taken together, our findings suggest that neuroinflammation induced by peripheral LPS administration contributes to cognitive dysfunction.

13.
Neuropharmacology ; 138: 130-139, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879409

RESUMEN

Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia.


Asunto(s)
Antipsicóticos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/enzimología , Quinurenina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/enzimología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Relación Dosis-Respuesta a Droga , Ácido Quinurénico/metabolismo , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/genética , Masculino , Ratones Noqueados , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...