Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272451

RESUMEN

Catechins, a class of polyphenolic compounds found in tea, have attracted significant attention due to their numerous health benefits, particularly for the treatment and protection of hypertension. However, the potential targets and mechanisms of action of catechins in combating hypertension remain unclear. This study systematically investigates the anti-hypertensive mechanisms of tea catechins using network pharmacology, molecular docking, and molecular dynamics simulation techniques. The results indicate that 23 potential anti-hypertensive targets for eight catechin components were predicted through public databases. The analysis of protein-protein interaction (PPI) identified three key targets (MMP9, BCL2, and HIF1A). KEGG pathway and GO enrichment analyses revealed that these key targets play significant roles in regulating vascular smooth muscle contraction, promoting angiogenesis, and mediating vascular endothelial growth factor receptor signaling. The molecular docking results demonstrate that the key targets (MMP9, BCL2, and HIF1A) effectively bind with catechin components (CG, GCG, ECG, and EGCG) through hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations further confirmed the stability of the binding between catechins and the targets. This study systematically elucidates the potential mechanisms by which tea catechins treat anti-hypertension and provides a theoretical basis for the development and application of tea catechins as functional additives for the prevention of hypertension.

2.
BMC Plant Biol ; 21(1): 478, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34670494

RESUMEN

BACKGROUND: Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS: In the 250 µmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 µmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 µmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS: In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 µmol·m- 2·s- 1 and 350 µmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 µmol·m- 2·s- 1 or 550 µmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.


Asunto(s)
Camellia sinensis/efectos de la radiación , Catequina/análogos & derivados , Catequina/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiología , Catequina/efectos de la radiación , Luz , Proteínas de Plantas/genética , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA