Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012214, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848440

RESUMEN

CRISPR is a gene editing technology which enables precise in-vivo genome editing; but its potential is hampered by its relatively low specificity and sensitivity. Improving CRISPR's on-target and off-target effects requires a better understanding of its mechanism and determinants. Here we demonstrate, for the first time, the chromosomal 3D spatial structure's association with CRISPR's cleavage efficiency, and its predictive capabilities. We used high-resolution Hi-C data to estimate the 3D distance between different regions in the human genome and utilized these spatial properties to generate 3D-based features, characterizing each region's density. We evaluated these features based on empirical, in-vivo CRISPR efficiency data and compared them to 425 features used in state-of-the-art models. The 3D features ranked in the top 13% of the features, and significantly improved the predictive power of LASSO and xgboost models trained with these features. The features indicated that sites with lower spatial density demonstrated higher efficiency. Understanding how CRISPR is affected by the 3D DNA structure provides insight into CRISPR's mechanism in general and improves our ability to correctly predict CRISPR's cleavage as well as design sgRNAs for therapeutic and scientific use.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Humano , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma Humano/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Biología Computacional/métodos , Genómica/métodos , Conformación de Ácido Nucleico , ADN/genética , ADN/química , ADN/metabolismo
2.
Comput Struct Biotechnol J ; 23: 1740-1754, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38689718

RESUMEN

The modeling of miRNA-mRNA interactions holds significant implications for synthetic biology and human health. However, this research area presents specific challenges due to the multifaceted nature of mRNA downregulation by miRNAs, influenced by numerous factors including competition or synergism among miRNAs and mRNAs. In this study, we present an improved computational model for predicting miRNA-mRNA interactions, addressing aspects not previously modeled. Firstly, we integrated a novel set of features that significantly enhanced the predictor's performance. Secondly, we demonstrated the cell-specific nature of certain aspects of miRNA-mRNA interactions, highlighting the importance of designing models tailored to specific cell types for improved accuracy. Moreover, we introduce a miRNA binding site interaction model (miBSIM) that, for the first time, accounts for both the distribution of miRNA binding sites along the mRNA and their respective strengths in regulating mRNA stability. Our analysis suggests that distant miRNA sites often compete with each other, revealing the intricate interplay of binding site interactions. Overall, our new predictive model shows a significant improvement of up to 6.43% over previous models in the field. The code of our model is available at https://www.cs.tau.ac.il/~tamirtul/miBSIM.

3.
Methods Mol Biol ; 2760: 371-392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468099

RESUMEN

Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.


Asunto(s)
Ingeniería Genética , Inestabilidad Genómica , Humanos , ADN/genética , Proteínas/genética
4.
NPJ Syst Biol Appl ; 10(1): 25, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453965

RESUMEN

Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.


Asunto(s)
Neoplasias , Empalme del ARN , Humanos , Empalme del ARN/genética , Mutación/genética , Empalme Alternativo/genética , ARN Mensajero/genética , Neoplasias/genética , Simulación por Computador
5.
Trends Biotechnol ; 41(12): 1518-1531, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37442714

RESUMEN

Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.


Asunto(s)
Evolución Biológica , Biología Sintética , Tecnología , Organismos Modificados Genéticamente/genética
6.
Front Immunol ; 14: 1031914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153628

RESUMEN

Introduction: The success of the human body in fighting SARS-CoV2 infection relies on lymphocytes and their antigen receptors. Identifying and characterizing clinically relevant receptors is of utmost importance. Methods: We report here the application of a machine learning approach, utilizing B cell receptor repertoire sequencing data from severely and mildly infected individuals with SARS-CoV2 compared with uninfected controls. Results: In contrast to previous studies, our approach successfully stratifies non-infected from infected individuals, as well as disease level of severity. The features that drive this classification are based on somatic hypermutation patterns, and point to alterations in the somatic hypermutation process in COVID-19 patients. Discussion: These features may be used to build and adapt therapeutic strategies to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic antibodies. These results constitute a proof of concept for future epidemiological challenges.


Asunto(s)
Linfocitos B , COVID-19 , Humanos , Receptores de Antígenos de Linfocitos B/genética , ARN Viral , SARS-CoV-2/genética , Gravedad del Paciente
7.
EMBO J ; 42(12): e112362, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37155573

RESUMEN

eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Neoplasias , Humanos , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas
8.
PLoS One ; 18(5): e0283630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37146031

RESUMEN

We previously were able to predict the anaerobic mechanical power outputs using features taken from a maximal incremental cardiopulmonary exercise stress test (CPET). Since a standard aerobic exercise stress test (with electrocardiogram and blood pressure measurements) has no gas exchange measurement and is more popular than CPET, our goal, in the current paper, was to investigate whether features taken from a clinical exercise stress test (GXT), either submaximal or maximal, can predict the anaerobic mechanical power outputs to the same level as we found with CPET variables. We have used data taken from young healthy subjects undergoing CPET aerobic test and the Wingate anaerobic test, and developed a computational predictive algorithm, based on greedy heuristic multiple linear regression, which enabled the prediction of the anaerobic mechanical power outputs from a corresponding GXT measures (exercise test time, treadmill speed and slope). We found that for submaximal GXT of 85% age predicted HRmax, a combination of 3 and 4 variables produced a correlation of r = 0.93 and r = 0.92 with % error equal to 15 ± 3 and 16 ± 3 on the validation set between real and predicted values of the peak and mean anaerobic mechanical power outputs (p < 0.001), respectively. For maximal GXT (100% of age predicted HRmax), a combination of 4 and 2 variables produced a correlation of r = 0.92 and r = 0.94 with % error equal to 12 ± 2 and 14 ± 3 on the validation set between real and predicted values of the peak and mean anaerobic mechanical power outputs (p < 0.001), respectively. The newly developed model allows to accurately predict the anaerobic mechanical power outputs from a standard, submaximal and maximal GXT. Nevertheless, in the current study the subjects were healthy, normal individuals and therefore the assessment of additional subjects is desirable for the development of a test applicable to other populations.


Asunto(s)
Prueba de Esfuerzo , Consumo de Oxígeno , Humanos , Anaerobiosis , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Análisis Multivariante
9.
NPJ Biofilms Microbiomes ; 9(1): 5, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693851

RESUMEN

Codon and amino acid usage were associated with almost every aspect of microbial life. However, how the environment may impact the codon and amino acid choice of microbial communities at the habitat level is not clearly understood. Therefore, in this study, we analyzed codon and amino acid usage patterns of a large number of environmental samples collected from diverse ecological niches. Our results suggested that samples derived from similar environmental niches, in general, show overall similar codon and amino acid distribution as compared to samples from other habitats. To substantiate the relative impact of the environment, we considered several factors, such as their similarity in GC content, or in functional or taxonomic abundance. Our analysis demonstrated that none of these factors can fully explain the trends that we observed at the codon or amino acid level implying a direct environmental influence on them. Further, our analysis demonstrated different levels of selection on codon bias in different microbial communities with the highest bias in host-associated environments such as the digestive system or oral samples and the lowest level of selection in soil and water samples. Considering a large number of metagenomic samples here we showed that microorganisms collected from similar environmental backgrounds exhibit similar patterns of codon and amino acid usage irrespective of the location or time from where the samples were collected. Thus our study suggested a direct impact of the environment on codon and amino usage of microorganisms that cannot be explained considering the influence of other factors.


Asunto(s)
Aminoácidos , Microbiota , Codón , Metagenoma , Metagenómica
10.
J R Soc Interface ; 19(197): 20220535, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541059

RESUMEN

During translation, mRNAs 'compete' for shared resources. Under stress conditions, during viral infection and also in high-throughput heterologous gene expression, these resources may become scarce, e.g. the pool of free ribosomes is starved, and then the competition may have a dramatic effect on the global dynamics of translation in the cell. We model this scenario using a network that includes m ribosome flow models (RFMs) interconnected via a pool of free ribosomes. Each RFM models ribosome flow along an mRNA molecule, and the pool models the shared resource. We assume that the number of mRNAs is large, so many ribosomes are attached to the mRNAs, and the pool is starved. Our analysis shows that adding an mRNA has an intricate effect on the total protein production. The new mRNA produces new proteins, but the other mRNAs produce less proteins, as the pool that feeds these mRNAs now has a smaller abundance of ribosomes. As the number of mRNAs increases, the marginal utility of adding another mRNA diminishes, and the total protein production rate saturates to a limiting value. We demonstrate our approach using an example of insulin protein production in a cell-free system.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Modelos Teóricos , ARN Mensajero/metabolismo
11.
Biology (Basel) ; 11(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36138780

RESUMEN

Recent research in the field of bioinformatics and molecular biology has revealed the immense complexity and uniqueness of microbiomes, while also showcasing the impact of the symbiosis between a microbiome and its host or environment. A core property influencing this process is horizontal gene transfer between members of the bacterial community used to maintain genetic variation. The essential effect of this mechanism is the exposure of genetic information to a wide array of members of the community, creating an additional "layer" of information in the microbiome named the "plasmidome". From an engineering perspective, introduction of genetic information to an environment must be facilitated into chosen species which will be able to carry out the desired effect instead of competing and inhibiting it. Moreover, this process of information transfer imposes concerns for the biosafety of genetic engineering of microbiomes as exposure of genetic information into unwanted hosts can have unprecedented ecological impacts. Current technologies are usually experimentally developed for a specific host/environment, and only deal with the transformation process itself at best, ignoring the impact of horizontal gene transfer and gene-microbiome interactions that occur over larger periods of time in uncontrolled environments. The goal of this research was to design new microbiome-specific versions of engineered genetic information, providing an additional layer of compatibility to existing engineering techniques. The engineering framework is entirely computational and is agnostic to the selected microbiome or gene by reducing the problem into the following set up: microbiome species can be defined as wanted or unwanted hosts of the modification. Then, every element related to gene expression (e.g., promoters, coding regions, etc.) and regulation is individually examined and engineered by novel algorithms to provide the defined expression preferences. Additionally, the synergistic effect of the combination of engineered gene blocks facilitates robustness to random mutations that might occur over time. This method has been validated using both computational and experimental tools, stemming from the research done in the iGEM 2021 competition, by the TAU group.

12.
Comput Struct Biotechnol J ; 20: 2521-2538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685358

RESUMEN

The process of translation initiation in prokaryotes is mediated by the hybridization of the 16S rRNA of the small ribosomal subunit with the mRNA in a short region called the ribosomal binding site. However, translation initiation in chloroplasts, which have evolved from an ancestral bacterium, is not well understood. Some studies suggest that in many cases it differs from translation initiation in bacteria and involves various novel interactions of the mRNA structures with intracellular factors; however currently, there is no generic quantitative model related to these aspects in chloroplasts. We developed a novel computational pipeline and models that can be used for understanding and modeling translation regulation in chloroplasts. We demonstrate that local folding and co-folding energy of the rRNA and the mRNA correlates with codon usage estimators of expression levels (r = -0.63) and infer predictive models that connect these energies and codon usage to protein levels (with correlation up to 0.71). In addition, we demonstrate that the ends of the transcripts in chloroplasts are populated with various structural elements that may be functional. Furthermore, we report a database of 166 novel structures in the chloroplast transcripts that are predicted to be functional. We believe that the models reported here improve existing understandings of genomic evolution and the biophysics of translation in chloroplasts; as such, they can aid gene expression engineering in chloroplasts for various biotechnological objectives.

13.
Comput Struct Biotechnol J ; 20: 1142-1153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35317239

RESUMEN

The expression of proteins in Escherichia coli is often essential for their characterization, modification, and subsequent application. Gene sequence is the major factor contributing expression. In this study, we used the expression data from 6438 heterologous proteins under the same expression condition in E. coli to construct a deep learning classifier for screening high- and low-expression proteins. In conjunction with conserved residue analysis to minimize functional disruption, a mutation predictor for enhanced protein expression (MPEPE) was proposed to identify mutations conducive to protein expression. MPEPE identified mutation sites in laccase 13B22 and the glucose dehydrogenase FAD-AtGDH, that significantly increased both expression levels and activity of these proteins. Additionally, a significant correlation of 0.46 between the predicted high level expression propensity with the constructed models and the protein abundance of endogenous genes in E. coli was also been detected. Therefore, the study provides foundational insights into the relationship between specific amino acid usage, codon usage, and protein expression, and is essential for research and industrial applications.

14.
Nucleic Acids Res ; 50(3): 1297-1316, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100399

RESUMEN

Translation Complex Profile Sequencing (TCP-seq), a protocol that was developed and implemented on Saccharomyces cerevisiae, provides the footprints of the small subunit (SSU) of the ribosome (with additional factors) across the entire transcriptome of the analyzed organism. In this study, based on the TCP-seq data, we developed for the first-time a predictive model of the SSU density and analyzed the effect of transcript features on the dynamics of the SSU scan in the 5'UTR. Among others, our model is based on novel tools for detecting complex statistical relations tailored to TCP-seq. We quantitatively estimated the effect of several important features, including the context of the upstream AUG, the upstream ORF length and the mRNA folding strength. Specifically, we suggest that around 50% of the variance related to the read counts (RC) distribution near a start codon can be attributed to the AUG context score. We provide the first large scale direct quantitative evidence that shows that indeed AUG context affects the small sub-unit movement. In addition, we suggest that strong folding may cause the detachment of the SSU from the mRNA. We also identified a number of novel sequence motifs that can affect the SSU scan; some of these motifs affect transcription factors and RNA binding proteins. The results presented in this study provide a better understanding of the biophysical aspects related to the SSU scan along the 5'UTR and of translation initiation in S. cerevisiae, a fundamental step toward a comprehensive modeling of initiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiones no Traducidas 5' , Codón Iniciador/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
ACS Synth Biol ; 11(3): 1142-1151, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34928133

RESUMEN

Modern synthetic biology procedures rely on the ability to generate stable genetic constructs that keep their functionality over long periods of time. However, maintenance of these constructs requires energy from the cell and thus reduces the host's fitness. Natural selection results in loss-of-functionality mutations that negate the expression of the construct in the population. Current approaches for the prevention of this phenomenon focus on either small-scale, manual design of evolutionary stable constructs or the detection of mutational sites with unstable tendencies. We designed the Evolutionary Stability Optimizer (ESO), a software tool that enables the large-scale automatic design of evolutionarily stable constructs with respect to both mutational and epigenetic hotspots and allows users to define custom hotspots to avoid. Furthermore, our tool takes the expression of the input constructs into account by considering the guanine-cytosine (GC) content and codon usage of the host organism, balancing the trade-off between stability and gene expression, allowing to increase evolutionary stability while maintaining the high expression. In this study, we present the many features of the ESO and show that it accurately predicts the evolutionary stability of endogenous genes. The ESO was created as an easy-to-use, flexible platform based on the notion that directed genetic stability research will continue to evolve and revolutionize current applications of synthetic biology. The ESO is available at the following link: https://www.cs.tau.ac.il/~tamirtul/ESO/.


Asunto(s)
Programas Informáticos , Biología Sintética , Secuencia de Bases , Mutación
16.
Comput Struct Biotechnol J ; 19: 6064-6079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34849209

RESUMEN

mRNA translation is the process which consumes most of the cellular energy. Thus, this process is under strong evolutionary selection for its optimization and rational optimization or reduction of the translation efficiency can impact the cell growth rate. Algorithms for modulating cell growth rate can have various applications in biotechnology, medicine, and agriculture. In this study, we demonstrate that the analysis of these algorithms can also be used for understanding translation. We specifically describe and analyze various generic algorithms, based on comprehensive computational models and whole cell simulations of translation, for introducing silent mutations that can either reduce or increase ribosomal traffic jams along the mRNA. As a result, more or less resources are available, for the cell, promoting improved or reduced cells growth-rate, respectively. We then explore the cost of these algorithms' performance, in terms of their computational time, the number of mutations they introduce, the modified genomic region, the effect on local translation rates, and the properties of the modified genes. Among others, we show that mRNA levels of a gene are much stronger predictors for the effect of its engineering on the ribosomal pool than the ribosomal density of the gene. We also demonstrate that the mutations at the ends of the coding regions have a stronger effect on the ribosomal pool. Furthermore, we report two optimization algorithms that exhibit a tread-off between the number of mutations they introduce and their executing time. The reported results here are fundamental both for understanding the biophysics and evolution of translation, as well as for developing efficient approaches for its engineering.

17.
ACS Synth Biol ; 10(12): 3489-3506, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34813269

RESUMEN

In recent years, intracellular biophysical simulations have been used with increasing frequency not only for answering basic scientific questions but also in the field of synthetic biology. However, since these models include networks of interaction between millions of components, they are extremely time-consuming and cannot run easily on parallel computers. In this study, we demonstrate for the first time a novel approach addressing this challenge by using a dedicated hardware designed specifically to simulate such processes. As a proof of concept, we specifically focus on mRNA translation, which is the process consuming most of the energy in the cell. We design a hardware that simulates translation in Escherichia coli and Saccharomyces cerevisiae for thousands of mRNAs and ribosomes, which is in orders of magnitude faster than a similar software solution. With the sharp increase in the amount of genomic data available today and the complexity of the corresponding models inferred from them, we believe that the strategy suggested here will become common and can be used among others for simulating entire cells with all gene expression steps.


Asunto(s)
Computadores , Biosíntesis de Proteínas , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Programas Informáticos
18.
Mathematics (Basel) ; 9(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34540628

RESUMEN

Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.

19.
RNA Biol ; 18(sup2): 684-698, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34586043

RESUMEN

The well-established Shine-Dalgarno model suggests that translation initiation in bacteria is regulated via base-pairing between ribosomal RNA (rRNA) and mRNA. We used novel computational analyses and modelling of 823 bacterial genomes coupled with experiments to demonstrate that rRNA-mRNA interactions are diverse and regulate all translation steps from pre-initiation to termination. Previous research has reported the significant influence of rRNA-mRNA interactions, mainly in the initiation phase of translation. The results reported in this paper suggest that, in addition to the rRNA-mRNA interactions near the start codon that trigger initiation in bacteria, rRNA-mRNA interactions affect all sub-stages of the translation process (pre-initiation, initiation, elongation, termination). As these interactions dictate translation efficiency, they serve as an evolutionary driving force for shaping transcripts in bacteria while considering trade-offs between the effects of different interactions across different transcript regions on translation efficacy and efficiency. We observed selection for strong interactions in regions where such interactions are likely to enhance initiation, regulate early elongation, and ensure translation termination fidelity. We discovered selection against strong interactions and for intermediate interactions in coding regions and presented evidence that these patterns maximize elongation efficiency while also enhancing initiation. These finding are relevant to all biomedical disciplines due to the centrality of the translation process and the effect of rRNA-mRNA interactions on transcript evolution.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Epistasis Genética , Células Procariotas/fisiología , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Bacterias/genética , Sistemas de Lectura Abierta , ARN Ribosómico 16S/genética
20.
NPJ Genom Med ; 6(1): 67, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385450

RESUMEN

In recent years it has been shown that silent mutations, in and out of the coding region, can affect gene expression and may be related to tumorigenesis and cancer cell fitness. However, the predictive ability of these mutations for cancer type diagnosis and prognosis has not been evaluated yet. In the current study, based on the analysis of 9,915 cancer genomes and approximately three million mutations, we provide a comprehensive quantitative evaluation of the predictive power of various types of silent and non-silent mutations over cancer classification and prognosis. The results indicate that silent-mutation models outperform the equivalent null models in classifying all examined cancer types and in estimating the probability of survival 10 years after the initial diagnosis. Additionally, combining both non-silent and silent mutations achieved the best classification results for 68% of the cancer types and the best survival estimation results for up to nine years after the diagnosis. Thus, silent mutations hold considerable predictive power over both cancer classification and prognosis, most likely due to their effect on gene expression. It is highly advised that silent mutations are integrated in cancer research in order to unravel the full genomic landscape of cancer and its ramifications on cancer fitness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...