Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(2): 1020-1046, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392183

RESUMEN

Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.

2.
Int J Food Microbiol ; 413: 110585, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246023

RESUMEN

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.


Asunto(s)
Acetil-CoA Carboxilasa , Aspergillus flavus , Aspergillus flavus/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Virulencia , Aflatoxina B1 , Mutación
4.
Toxins (Basel) ; 14(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548719

RESUMEN

The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we found that conditional disruption of glutamine synthetase (AflGsA) gene expression in Aspergillus flavus by using a xylose promoter leads to a complete glutamine deficiency. Supplementation of glutamine could restore the nutritional deficiency caused by AflGsA expression deficiency. Additionally, by using the xylose promoter for the downregulation of AflgsA expression, we found that AflGsA regulates spore and sclerotic development by regulating the transcriptional levels of sporulation genes abaA and brlA and the sclerotic generation genes nsdC and nsdD, respectively. In addition, AflGsA was found to maintain the balance of reactive oxygen species (ROS) and to aid in resisting oxidative stress. AflGsA is also involved in the regulation of light signals through the production of glutamine. The results also showed that the recombinant AflGsA had glutamine synthetase activity in vitro and required the assistance of metal ions. The inhibitor molecule L-α-aminoadipic acid suppressed the activity of rAflGsA in vitro and disrupted the morphogenesis of spores, sclerotia, and colonies in A. flavus. These results provide a mechanistic link between nutrition metabolism and glutamine synthetase in A. flavus and suggest a strategy for the prevention of fungal infection.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Xilosa/metabolismo , Proteínas Fúngicas/metabolismo , Esporas Fúngicas , Estrés Oxidativo , Regulación Fúngica de la Expresión Génica
5.
Appl Environ Microbiol ; 88(12): e0024422, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638847

RESUMEN

Heterotrimeric G-proteins play crucial roles in growth, asexual development, and pathogenicity of fungi. The regulator of G-protein signaling (RGS) proteins function as negative regulators of the G proteins to control the activities of GTPase in Gα subunits. In this study, we functionally characterized the six RGS proteins (i.e., RgsA, RgsB, RgsC, RgsD, RgsE, and FlbA) in the pathogenic fungus Aspergillus flavus. All the aforementioned RGS proteins were also found to be functionally different in conidiation, aflatoxin (AF) biosynthesis, and pathogenicity in A. flavus. Apart from FlbA, all other RGS proteins play a negative role in regulating both the synthesis of cyclic AMP (cAMP) and the activation of protein kinase A (PKA). Additionally, we also found that although RgsA and RgsE play a negative role in regulating the FadA-cAMP/PKA pathway, they function distinctly in aflatoxin biosynthesis. Similarly, RgsC is important for aflatoxin biosynthesis by negatively regulating the GanA-cAMP/PKA pathway. PkaA, which is the cAMP-dependent protein kinase catalytic subunit, also showed crucial influences on A. flavus phenotypes. Overall, our results demonstrated that RGS proteins play multiple roles in the development, pathogenicity, and AF biosynthesis in A. flavus through the regulation of Gα subunits and cAMP-PKA signals. IMPORTANCE RGS proteins, as crucial regulators of the G protein signaling pathway, are widely distributed in fungi, while little is known about their roles in Aspergillus flavus development and aflatoxin. In this study, we identified six RGS proteins in A. flavus and revealed that these proteins have important functions in the regulation of conidia, sclerotia, and aflatoxin formation. Our findings provide evidence that the RGS proteins function upstream of cAMP-PKA signaling by interacting with the Gα subunits (GanA and FadA). This study provides valuable information for controlling the contamination of A. flavus and mycotoxins produced by this fungus in pre- and postharvest of agricultural crops.


Asunto(s)
Aflatoxinas , Proteínas RGS , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal/genética , Esporas Fúngicas
6.
J Fungi (Basel) ; 7(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34436205

RESUMEN

Aspergillus flavus (A. flavus) is a ubiquitous and opportunistic fungal pathogen that causes invasive and non-invasive aspergillosis in humans and animals. This fungus is also capable of infecting a large number of agriculture crops (e.g., peanuts, maze, cotton seeds, rice, etc.), causing economic losses and posing serious food-safety concerns when these crops are contaminated with aflatoxins, the most potent naturally occurring carcinogens. In particular, A. flavus and aflatoxins are intensely studied, and they continue to receive considerable attention due to their detrimental effects on humans, animals, and crops. Although several studies have been published focusing on the biosynthesis of the aforementioned secondary metabolites, some of the molecular mechanisms (e.g., posttranslational modifications, transcription factors, transcriptome, proteomics, metabolomics and transcriptome, etc.) involved in the fungal development and aflatoxin biosynthesis in A. flavus are still not fully understood. In this study, a review of the recently published studies on the function of the genes and the molecular mechanisms involved in development of A. flavus and the production of its secondary metabolites is presented. It is hoped that the information provided in this review will help readers to develop effective strategies to reduce A. flavus infection and aflatoxin production.

7.
Microb Biotechnol ; 14(2): 628-642, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159717

RESUMEN

As a pathogenic fungus, Aspergillus flavus can produce carcinogenic aflatoxins (AFs), which poses a great threat to crops and animals. Msb2, the signalling mucin protein, is a part of mitogen-activated protein kinase (MAPK) pathway which contributes to a range of physiological processes. In this study, the roles of membrane mucin Msb2 were explored in A. flavus by the application of gene disruption. The deletion of msb2 gene (Δmsb2) caused defects in vegetative growth, sporulation and sclerotia formation when compared to WT and complement strain (Δmsb2C ) in A. flavus. Using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis, it was found that deletion of msb2 down-regulated aflatoxin B1 (AFB1 ) synthesis and decreased the infection capacity of A. flavus. Consistently, Msb2 responds to cell wall stress and osmotic stress by positively regulating the phosphorylation of MAP kinase. Notably, Δmsb2 mutant exhibited cell wall defect, and it was more sensitive to inhibitor caspofungin when compared to WT and Δmsb2C . Taking together, these results revealed that Msb2 plays key roles in morphological development process, stresses adaptation, secondary metabolism and pathogenicity in fungus A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aflatoxina B1 , Animales , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Mucinas , Virulencia
8.
Int J Mol Sci ; 20(9)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060313

RESUMEN

Aspergillus flavus, a ubiquitous filamentous fungus found in soil, plants and other substrates has been reported not only as a pathogen for plants, but also a carcinogen producing fungus for human. Peptidyl-Prolyl Isomerase (PPIases) plays an important role in cell process such as protein secretion cell cycle control and RNA processing. However, the function of PPIase has not yet been identified in A. flavus. In this study, the PPIases gene from A. flavus named ppci1 was cloned into expression vector and the protein was expressed in prokaryotic expression system. Activity of recombinant ppci1 protein was particularly inhibited by FK506, CsA and rapamycin. 3D-Homology model of ppci1 has been constructed with the template, based on 59.7% amino acid similarity. The homologous recombination method was used to construct the single ppci1 gene deletion strain Δppci1. We found that, the ppci1 gene plays important roles in A. flavus growth, conidiation, and sclerotia formation, all of which showed reduction in Δppci1 and increased in conidiation compared with the wild-type and complementary strains in A. flavus. Furthermore, aflatoxin and peanut seeds infection assays indicated that ppci1 contributes to virulence of A. flavus. Furthermore, we evaluated the effect of PPIase inhibitors on A. flavus growth, whereby these were used to treat wild-type strains. We found that the growths were inhibited under every inhibitor. All, these results may provide valuable information for designing inhibitors in the controlling infections of A. flavus.


Asunto(s)
Aspergillus flavus/enzimología , Aspergillus flavus/genética , Isomerasa de Peptidilprolil/genética , Secuencia de Aminoácidos , Biología Computacional/métodos , Espectrometría de Masas , Simulación de Dinámica Molecular , Péptidos , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/aislamiento & purificación , Isomerasa de Peptidilprolil/metabolismo , Filogenia , Conformación Proteica , Análisis de Secuencia de ADN , Relación Estructura-Actividad , Especificidad por Sustrato
9.
BMC Mol Biol ; 20(1): 4, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744561

RESUMEN

BACKGROUND: Woronin bodies are fungal-specific organelles whose formation is derived from peroxisomes. The former are believed to be involved in the regulation of mycotoxins biosynthesis, but not in their damage repair function. The hexagonal peroxisome protein (HexA or Hex1) encoded by hexA gene in Aspergillus is the main and the essential component of the Woronin body. However, little is known about HexA in Aspergillus flavus. RESULTS: In this study, hexA knock-out mutant (ΔhexA) and complementation strain (ΔhexAC) were produced using homologous recombination. The results showed that, ΔhexA and ΔhexAC were successfully constructed. And the data analysis indicated that the colony diameter, stress sensitivity and the sclerotia formation of A. flavus were nearly not affected by the absence of HexA. Yet, the deletion of hexA gene reduced the production of asexual spores and lessened virulence on peanuts and maize seeds markedly. In addition, it was also found that there was a significant decrease of Aflatoxin B1 production in deletion mutant, when compared to wild type. CONCLUSIONS: Therefore, it suggested that the hexA gene has an essential function in conidia production and secondary metabolism in A. flavus. The gene is also believed to be playing an important role in the invasion of A. flavus to the host.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus , Proteínas Fúngicas/fisiología , Metabolismo Secundario/fisiología , Arachis/microbiología , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidad , Proteínas Fúngicas/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Metabolismo Secundario/genética , Semillas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/patogenicidad , Virulencia , Zea mays/microbiología
10.
Toxins (Basel) ; 11(1)2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646608

RESUMEN

Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral part of the mitogen activated protein kinase signal of the high osmolarity glycerol pathway. In this study, the AfsakA gene was deleted (∆AfsakA) then complemented (∆AfsakA::AfsakA) using homologous recombination and the osmotic stress was induced by 1.2 mol/L D-sorbital and 1.2 mol/L sodium chloride. The result showed that ∆AfsakA mutant caused a significant influence on conidial formation compared to wild-type and ∆AfsakA::AfsakA strains. It was also found that AfsakA responds to both the osmotic stress and the cell wall stress. In the absence of osmotic stress, ∆AfsakA mutant produced more sclerotia in contrast to other strains, whereas all strains failed to generate sclerotia under osmotic stress. Furthermore, the deletion of AfsakA resulted in the increase of Aflatoxin B1 production compared to other strains. The virulence assay on both maize kernel and peanut seeds showed that ∆AfsakA strain drastically produced more conidia and Aflatoxin B1 than wild-type and complementary strains. AfSakA-mCherry was located to the cytoplasm in the absence of osmotic stress, while it translocated to the nucleus upon exposure to the osmotic stimuli. This study provides new insights on the development and evaluation of aflatoxin biosynthesis and also provides better understanding on how to prevent Aspergillus infections which would be considered the first step towards the prevention of the seeds damages caused by A. flavus.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus , Proteínas Fúngicas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Presión Osmótica , Arachis/microbiología , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidad , Genes Fúngicos , Virulencia , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...