Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37888240

RESUMEN

Increased human population and the rapid decline of fossil fuels resulted in a global tendency to look for alternative fuel sources. Environmental concerns about fossil fuel combustion led to a sharp move towards renewable and environmentally friendly biofuels. Ethanol has been the primary fossil fuel alternative due to its low carbon emission rates, high octane content and comparatively facile microbial production processes. In parallel to the increased use of bioethanol in various fields such as transportation, heating and power generation, improvements in ethanol production processes turned out to be a global hot topic. Ethanol is by far the leading yeast output amongst a broad spectrum of bio-based industries. Thus, as a well-known platform microorganism and native ethanol producer, baker's yeast Saccharomyces cerevisiae has been the primary subject of interest for both academic and industrial perspectives in terms of enhanced ethanol production processes. Metabolic engineering strategies have been primarily adopted for direct manipulation of genes of interest responsible in mainstreams of ethanol metabolism. To overcome limitations of rational metabolic engineering, an alternative bottom-up strategy called inverse metabolic engineering has been widely used. In this context, evolutionary engineering, also known as adaptive laboratory evolution (ALE), which is based on random mutagenesis and systematic selection, is a powerful strategy to improve bioethanol production of S. cerevisiae. In this review, we focus on key examples of metabolic and evolutionary engineering for improved first- and second-generation S. cerevisiae bioethanol production processes. We delve into the current state of the field and show that metabolic and evolutionary engineering strategies are intertwined and many metabolically engineered strains for bioethanol production can be further improved by powerful evolutionary engineering strategies. We also discuss potential future directions that involve recent advancements in directed genome evolution, including CRISPR-Cas9 technology.

2.
Front Microbiol ; 14: 1148065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113225

RESUMEN

2-Phenylethanol is an aromatic compound commonly used in the food, cosmetic, and pharmaceutical industries. Due to increasing demand for natural products by consumers, the production of this flavor by microbial fermentation is gaining interest, as a sustainable alternative to chemical synthesis or expensive plant extraction, both processes relying on the use of fossil resources. However, the drawback of the fermentation process is the high toxicity of 2-phenylethanol to the producing microorganism. The aim of this study was to obtain a 2-phenylethanol-resistant Saccharomyces cerevisiae strain by in vivo evolutionary engineering and characterize the adapted yeast at the genomic, transcriptomic and metabolic levels. For this purpose, the tolerance to 2-phenylethanol was developed by gradually increasing the concentration of this flavor compound through successive batch cultivations, leading to an adapted strain that could tolerate 3.4 g/L of 2-phenylethanol, which was about 3-times better than the reference strain. Genome sequencing of the adapted strain identified point mutations in several genes, notably in HOG1 that encodes the Mitogen-Activated Kinase of the high-osmolarity signaling pathway. As this mutation is localized in the phosphorylation lip of this protein, it likely resulted in a hyperactive protein kinase. Transcriptomic analysis of the adapted strain supported this suggestion by revealing a large set of upregulated stress-responsive genes that could be explained in great part by HOG1-dependent activation of the Msn2/Msn4 transcription factor. Another relevant mutation was found in PDE2 encoding the low affinity cAMP phosphodiesterase, the missense mutation of which may lead to hyperactivation of this enzyme and thereby enhance the stressful state of the 2-phenylethanol adapted strain. In addition, the mutation in CRH1 that encodes a chitin transglycosylase implicated in cell wall remodeling could account for the increased resistance of the adapted strain to the cell wall-degrading enzyme lyticase. Finally, the potent upregulation of ALD3 and ALD4 encoding NAD+ -dependent aldehyde dehydrogenase together with the observed phenylacetate resistance of the evolved strain suggest a resistance mechanism involving conversion of 2-phenylethanol into phenylacetaldehyde and phenylacetate implicating these dehydrogenases.

3.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34172441

RESUMEN

Lignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in Saccharomyces cerevisiae that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified). Furthermore, a functionally orthogonal, lightweight design enables seamless transferability to existing metabolically engineered chassis strains: We endow full, multifeedstock tolerance on a xylose-consuming strain and one producing the biodegradable plastics precursor lactic acid. The demonstration of "drop-in" hydrolysate competence enables the potential of cost-effective, at-scale biomass utilization for cellulosic fuel and nonfuel products alike.

4.
J Biosci Bioeng ; 124(3): 309-318, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28552194

RESUMEN

Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v-1) and gradually increasing (5-11.4%, v v-1) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v-1) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v-1) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization.


Asunto(s)
Diploidia , Evolución Molecular Dirigida , Etanol/metabolismo , Haploidia , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Regulación hacia Abajo , Fermentación/efectos de los fármacos , Glucólisis , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
5.
Methods Mol Biol ; 1152: 169-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744033

RESUMEN

Evolutionary engineering is an inverse metabolic engineering strategy which is based on increasing genetic diversity and screening large populations for desired phenotypes. This strategy is highly advantageous in certain situations over rational metabolic engineering approaches, since there is little or no requirement of detailed genetic background information for the trait of interest. Here, we describe the experimental methodology for selecting stress-resistant yeast strains via evolutionary engineering approach by either serial batch or chemostat cultivations.


Asunto(s)
Evolución Molecular , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Mutagénesis , Mutación , Fenotipo
6.
FEMS Yeast Res ; 12(2): 171-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22136139

RESUMEN

This article reviews evolutionary engineering of Saccharomyces cerevisiae. Following a brief introduction to the 'rational' metabolic engineering approach and its limitations such as extensive genetic and metabolic information requirement on the organism of interest, complexity of cellular physiological responses, and difficulties of cloning in industrial strains, evolutionary engineering is discussed as an alternative, inverse metabolic engineering strategy. Major evolutionary engineering applications with S. cerevisiae are then discussed in two general categories: (1) evolutionary engineering of substrate utilization and product formation and (2) evolutionary engineering of stress resistance. Recent developments in functional genomics methods allow rapid identification of the molecular basis of the desired phenotypes obtained by evolutionary engineering. To conclude, when used alone or in combination with rational metabolic engineering and/or computational methods to study and analyze processes of adaptive evolution, evolutionary engineering is a powerful strategy for improvement in industrially important, complex properties of S. cerevisiae.


Asunto(s)
Evolución Biológica , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microbiología Industrial , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...