Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 74(5): 319-334, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38377314

RESUMEN

Mid-wavelength infrared (MWIR) imaging Fourier transform spectrometers (IFTSs) are a promising technology for measuring flare combustion efficiency (CE) and destruction removal efficiency (DRE). These devices generate spectrally resolved intensity images of the flare plume, which may then be used to infer column densities of relevant species along each pixel line-of-sight. In parallel, a 2D projected velocity field may be inferred from the apparent motion of flow features between successive images. Finally, the column densities and velocity field are combined to estimate the mass flow rates for the species needed to calculate the CE or DRE. Since the MWIR IFTS can measure key carbon-containing species in the flare plume, it is possible to measure CE without knowing the fuel flow rate, which is important for fenceline measurements. This work demonstrates this approach on a laboratory heated vent, and then deploys the technique on two working flares: a combustor burning natural gas at a known rate, and a steam-assisted flare at a petrochemical refinery. Analysis of the IFTS data highlights the potential of this approach, but also areas for future development to transform this approach into a reliable technique for quantifying flare emissions.Implications: Our research is motivated by the need to assess hydrocarbon emissions from flaring, which is a critical problem of global significance. For example, recent studies have shown that methane destruction efficiency of flaring from upstream oil may be significantly lower than the commonly assumed figure of 98%; work by Plant et al. , in particular, suggest that this discrepancy amounts to CO2 emissions from 2 to 8 million automobiles annually, considering the US alone. Similarly, the international energy agency (IEA) estimates a global flare efficiency of 92%, which translates in 8 million tons of CH4 emitted by flares in 2020. Highlighted by these studies and supported by the World Bank initiatives toward zero routine flaring emissions, there is an urgent need for oil and gas industry to assess their flare methane emission, and overall hydrocarbon emissions. At the very least, it is critical to identify problematic flare operating conditions and means to mitigate flare emissions. Focusing on remote quantification of plume species, the measurement technique and quantification method presented in this paper is a considerable step forward in that direction by computing combustion efficiency and key components for destruction efficiency.


Asunto(s)
Contaminantes Atmosféricos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Gas Natural/análisis
2.
Children (Basel) ; 9(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35455497

RESUMEN

A major hurdle in pediatric formulation development is the lack of safety and toxicity data on some of the commonly used excipients. While the maximum oral safe dose for several kinds of excipients is known in the adult population, the doses in pediatric patients, including preterm neonates, are not established yet due to the lack of evidence-based data. This paper consists of four parts: (1) country-specific perspectives in different parts of the world (current state, challenges in excipients, and ongoing efforts) for ensuring the use of safe excipients, (2) comparing and contrasting the country-specific perspectives, (3) past and ongoing collaborative efforts, and (4) future perspectives on excipients for pediatric formulation. The regulatory process for pharmaceutical excipients has been developed. However, there are gaps between each region where a lack of information and an insufficient regulation process was found. Ongoing efforts include raising issues on excipient exposure, building a region-specific database, and improving excipient regulation; however, there is a lack of evidence-based information on safety for the pediatric population. More progress on clear safety limits, quantitative information on excipients of concern in the pediatric population, and international harmonization of excipients' regulatory processes for the pediatric population are required.

3.
FASEB J ; 35(6): e21666, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34033145

RESUMEN

Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.


Asunto(s)
COVID-19 , Leucotrieno B4/metabolismo , Leucotrieno E4/análogos & derivados , Leucotrieno E4/metabolismo , Lipoxinas/metabolismo , Pulmón , SARS-CoV-2/metabolismo , Adulto , COVID-19/metabolismo , COVID-19/patología , COVID-19/terapia , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad
4.
FASEB J ; 34(3): 4253-4265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32012340

RESUMEN

The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.


Asunto(s)
Ácido Araquidónico/farmacología , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Glicéridos/metabolismo , Humanos , Hidrólisis , Immunoblotting , Leucocitos , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J Leukoc Biol ; 106(6): 1337-1347, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556464

RESUMEN

2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/ß-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG  ≥ 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ∼52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Regulación de la Expresión Génica , Glicéridos/metabolismo , Leucocitos/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Transducción de Señal , Biomarcadores , Inhibidores Enzimáticos/farmacología , Humanos , Hidrólisis/efectos de los fármacos , Leucocitos/efectos de los fármacos
6.
J Leukoc Biol ; 105(6): 1131-1142, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30676680

RESUMEN

Leukotriene B4 (LTB4 ) plays a prominent role in innate immunity as it induces phagocyte recruitment, the release of antimicrobial effectors, and as it potentiates the ingestion and killing of pathogens. In humans, LTB4 has a short half-life and is rapidly metabolized by leukocytes, notably into 20-OH- and 20-COOH-LTB4 by neutrophils. Although these LTB4 metabolites bind to the BLT1 receptor with high affinity, they activate neutrophils to a much lower extent than LTB4 . We thus postulated that LTB4 metabolites could dampen BLT1 -mediated responses, therefore limiting the impact of LTB4 on human neutrophil functions. We found that 20-OH-LTB4 and 20-COOH-LTB4 inhibited all of the LTB4 -mediated neutrophil responses we tested (migration, degranulation, leukotriene biosynthesis). The potencies of the different compounds at inhibiting LTB4 -mediated responses were 20-OH-LTB4  = CP 105,696 (BLT1 antagonist) > > 20-COOH-LTB4 ≥ resolvin E1 (RVE1 ). In contrast, the fMLP- and IL-8-mediated responses we tested were not affected by the LTB4 metabolites or RVE1 . 20-OH-LTB4 and 20-COOH-LTB4 also inhibited the LTB4 -mediated migration of human eosinophils but not that induced by 5-KETE. Moreover, using 20-COOH-LTB4 , LTB4 , and LTB4 -alkyne, we show that LTB4 is a chemotactic, rather than a chemokinetic factor for both human neutrophils and eosinophils. In conclusion, our data indicate that LTB4 metabolites and RVE1 act as natural inhibitors of LTB4 -mediated responses. Thus, preventing LTB4 ω-oxidation might result in increased innate immunity and granulocyte functions.


Asunto(s)
Eosinófilos/inmunología , Leucotrieno B4/inmunología , Neutrófilos/inmunología , Receptores de Leucotrieno B4/inmunología , Ácidos Araquidónicos/farmacología , Benzopiranos/farmacología , Ácidos Carboxílicos/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Eosinófilos/citología , Humanos , Leucotrieno B4/farmacología , Neutrófilos/citología , Receptores de Leucotrieno B4/antagonistas & inhibidores
7.
PLoS One ; 13(8): e0202424, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30118527

RESUMEN

Neutrophils and eosinophils are important sources of bioactive lipids from the 5- and the 15-lipoxygenase (LO) pathways. Herein, we compared the effectiveness of humans eosinophils and eosinophil-depleted neutrophils to synthesize 15-LO metabolites using a cocktail of different 15-LO substrates as well as their sensitivities to eight documented 15-lipoxygenase inhibitors. The treatment of neutrophils and eosinophils with linoleic acid, dihomo-γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid and arachidonyl-ethanolamide, led to the synthesis of 13-HODE, 15-HETrE, 15-HETE, 15-HEPE, 14-HDHA/17-HDHA, and 15-hydroxy-AEA. Neutrophils and eosinophils also metabolized the endocannabinoid 2-arachidonoyl-glycerol into 15-HETE-glycerol, although this required 2-arachidonoyl-glycerol hydrolysis inhibition. Neutrophils and eosinophils differed in regard to dihomo-γ-linolenic acid and linoleic acid utilization with 15-HETrE/13-HODE ratios of 0.014 ± 0.0008 and 0.474 ± 0.114 for neutrophils and eosinophils respectively. 15-LO metabolite synthesis by neutrophils and eosinophils also differed in regard to their relative production of 17-HDHA and 14-HDHA.The synthesis of 15-LO metabolites by neutrophils was concentration-dependent and rapid, reaching a plateau after one minute. While investigating the biosynthetic routes involved, we found that eosinophil-depleted neutrophils express the 15-lipoxygenase-2 but not the 15-LO-1, in contrast to eosinophils which express the 15-LO-1 but not the 15-LO-2. Moreover, 15-LO metabolite synthesis by neutrophils was not inhibited by the 15-LO-1 inhibitors BLX769, BLX3887, and ML351. However, 15-LO product synthesis was partially inhibited by 100 µM NDGA. Altogether, our data indicate that the best 15-LO-1 inhibitors in eosinophils are BLX3887, BLX769, NDGA and ML351 and that the synthesis of 15-LO metabolites by neutrophils does not involve the 15-LO-1 nor the phosphorylation of 5-LO on Ser-663 but is rather the consequence of 15-LO-2 or another unidentified 15-LO.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Eosinófilos/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Neutrófilos/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Factores de Tiempo
8.
J Immunol ; 198(8): 3255-3263, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28258202

RESUMEN

The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.


Asunto(s)
Dinoprostona/metabolismo , Endocannabinoides/metabolismo , Neutrófilos/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Cromatografía Liquida , Dinoprostona/inmunología , Endocannabinoides/inmunología , Glicerol , Humanos , Immunoblotting , Espectrometría de Masas , Neutrófilos/inmunología , Reacción en Cadena de la Polimerasa , Subtipo EP2 de Receptores de Prostaglandina E/inmunología
9.
PLoS One ; 12(1): e0169804, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28068410

RESUMEN

LTB4 is an inflammatory lipid mediator mainly biosynthesized by leukocytes. Since its implication in inflammatory diseases is well recognized, many tools to regulate its biosynthesis have been developed and showed promising results in vitro and in vivo, but mixed results in clinical trials. Recently, the mTOR pathway component p70S6 kinase 1 (p70S6K1) has been linked to LTC4 synthase and the biosynthesis of cysteinyl-leukotrienes. In this respect, we investigated if p70S6K1 could also play a role in LTB4 biosynthesis. We thus evaluated the impact of the p70S6K1 inhibitors PF-4708671 and LY2584702 on LTB4 biosynthesis in human neutrophils. At a concentration of 10 µM, both compounds inhibited S6 phosphorylation, although neither one inhibited the thapsigargin-induced LTB4 biosynthesis, as assessed by the sum of LTB4, 20-OH-LTB4, and 20-COOH-LTB4. However, PF-4708671, but not LY2584702, inhibited the ω-oxidation of LTB4 into 20-OH-LTB4 by intact neutrophils and by recombinant CYP4F3A, leading to increased LTB4 levels. This was true for both endogenously biosynthesized and exogenously added LTB4. In contrast to that of 17-octadecynoic acid, the inhibitory effect of PF-4708671 was easily removed by washing the neutrophils, indicating that PF-4708671 was a reversible CYP4F3A inhibitor. At optimal concentration, PF-4708671 increased the half-life of LTB4 in our neutrophil suspensions by 7.5 fold, compared to 5 fold for 17-octadecynoic acid. Finally, Michaelis-Menten and Lineweaver-Burk plots indicate that PF-4708671 is a mixed inhibitor of CYP4F3A. In conclusion, we show that PF-4708671 inhibits CYP4F3A and prevents the ω-oxidation of LTB4 in cellulo, which might result in increased LTB4 levels in vivo.


Asunto(s)
Familia 4 del Citocromo P450/antagonistas & inhibidores , Imidazoles/farmacología , Leucotrieno B4/metabolismo , Oxidación-Reducción/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Activación Enzimática , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo
10.
Front Pharmacol ; 7: 317, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695418

RESUMEN

Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.

11.
Cell Mol Life Sci ; 73(23): 4449-4470, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27402121

RESUMEN

The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.


Asunto(s)
Inflamación/metabolismo , Inflamación/patología , Receptor Cannabinoide CB2/metabolismo , Animales , Clonación Molecular , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Receptor Cannabinoide CB2/genética , Transducción de Señal/genética
12.
J Leukoc Biol ; 97(6): 1049-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25877930

RESUMEN

2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Células Dendríticas/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Metabolismo de los Lípidos/inmunología , Linfocitos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Animales , Ácidos Araquidónicos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Endocannabinoides/inmunología , Glicéridos/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Hepatopatías/inmunología , Hepatopatías/metabolismo , Hepatopatías/patología , Linfocitos/inmunología , Linfocitos/patología , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Dolor/inmunología , Dolor/metabolismo , Dolor/patología , Ácidos Fosfatidicos/inmunología , Ácidos Fosfatidicos/metabolismo , Alcamidas Poliinsaturadas/inmunología , Receptores de Cannabinoides/inmunología , Receptores de Cannabinoides/metabolismo
14.
J Leukoc Biol ; 93(2): 267-76, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23242611

RESUMEN

The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB(4) biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG- and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of α-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB(4) biosynthesis or by blocking BLT(1). Importantly, neither CB(2) receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express ∼100-fold more CB(2) receptor mRNA than purified neutrophils, suggesting that CB(2) receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB(2) expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB(4) promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT(1). Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo.


Asunto(s)
Antiinfecciosos/metabolismo , Ácido Araquidónico/inmunología , Ácidos Araquidónicos/inmunología , Endocannabinoides/inmunología , Escherichia coli/inmunología , Glicéridos/inmunología , Herpesvirus Humano 1/inmunología , Neutrófilos/inmunología , Virus Sincitiales Respiratorios/inmunología , Staphylococcus aureus/inmunología , Antiinfecciosos/inmunología , Ácido Araquidónico/farmacología , Ácidos Araquidónicos/farmacología , Línea Celular , Endocannabinoides/farmacología , Glicéridos/farmacología , Humanos , Activación Neutrófila/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Neurobiol Aging ; 26(2): 195-206, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15582748

RESUMEN

ApoER2 is one of the major receptors for ApoE in the brain, and has been shown to be involved not only in lipoprotein endocytosis, as other members of the LDL receptor family of receptors, but also in various cellular functions such as signalling and cellular guidance. By using a model of synaptic plasticity in mice lacking none, one or two alleles of the apoER2 gene, we investigated the implication of such a receptor deficiency on the remodelling process. Our results indicate that animals lacking apoER2 express higher levels of brain APP, as well as both key amyloid peptides, while apoE levels are slightly lower. Following entorhinal cortex lesioning, apoE levels increase in the deafferented hippocampus, while a delay in the increase of APP was observed. Hippocampal amyloid levels are also increased in response to the lesion, and highly potentiated by the complete absence of apoER2 gene. The results suggest a significant role for apoER2 in signalling various proteins in response to massive deafferentation and may participate in maintaining efficient synaptic plasticity and dendritic remodelling.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores de Lipoproteína/fisiología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apolipoproteínas E/metabolismo , Western Blotting/métodos , Electrólisis/métodos , Corteza Entorrinal/lesiones , Corteza Entorrinal/metabolismo , Corteza Entorrinal/fisiología , Ensayo de Inmunoadsorción Enzimática/métodos , Hipocampo/citología , Hipocampo/lesiones , Hipocampo/fisiología , Inmunohistoquímica/métodos , Proteínas Relacionadas con Receptor de LDL , Ratones , Ratones Noqueados , Fragmentos de Péptidos/metabolismo , Receptores de Lipoproteína/deficiencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA