Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(4): 3766-3773, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32347478

RESUMEN

In this study, two macroporous butyl rubber (BR)-based sorbents prepared in benzene (H-BR) and in cyclohexane (L-BR) with different porosities were synthesized by cryogelation technique. Their performances as a passive sampler were studied and then compared with commercially available silicon rubber (polydimethylsiloxane, PDMS) passive sampler. For that aim, polycyclic aromatic hydrocarbon (PAH) absorption rates of the sorbents in the short-term and their accumulation capacities in the long-term periods were investigated. Four PAHs (naphthalene, phenanthrene, fluoranthene, and pyrene) with a different number of aromatic rings were utilized. The concentrations of the PAHs in solutions were quantified by fluorescence spectrophotometer. The results showed that the BR sampler prepared in benzene (H-BR) generally has the highest absorption rates for all PAHs. The rate constants k (h-1) of the H-BR, L-BR, and PDMS samplers were found as 1.07, 0.55, and 0.55 for naphthalene; 0.73, 0.16, and 0.09 for phenanthrene; 0.24, 0.26, and 0.08 for fluoranthene; and 0.97, 0.38, and 0.17 for pyrene, respectively. The highest PAH absorption capacity was found for the BR sorbents prepared in benzene for all PAHs. Thus, benzene was selected as the organic solvent rather than cyclohexane for further studies in the preparation of butyl rubber-based samplers. The H-BR possessing the highest absorption rate and capacity underlines their usage as a capable passive sampler for both short- and long-term monitoring activities in the aquatic environments.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Elastómeros , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
2.
ACS Appl Mater Interfaces ; 11(31): 28317-28326, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31290316

RESUMEN

Over the past decades, large quantities of organic compounds including polycyclic aromatic hydrocarbons (PAHs) entering aquatic systems create acutely toxic effects and chronic abnormalities in aquatic organisms. Passive sampling is an effective technique to detect organic compounds at very low concentrations in water by accumulating them in their structure to a measurable concentration level. Polymeric passive samplers reported so far have a nonporous structure, and hence, the absorption of organic compounds into the passive sampler is governed by their slow diffusion process. We present here novel macroporous rubber sorbents as monophasic passive samplers with tunable pore morphologies, extraordinary mechanical properties, and high sorption rates and capacities for PAHs. Sorbent materials based on single-network (SN), double-network (DN), and triple-network (TN) butyl rubber were prepared via the cryogelation technique from butyl rubber solutions in benzene as the solvent at -18 °C using a sulfur monochloride cross-linker. To obtain macroporous rubbers with DN and TN structures, the reactions were conducted in the macropores of SN and DN rubber networks, respectively. The porous morphology and the mechanical behavior of the rubbers can be tuned by adjusting the weight ratio wR of the network components. The rubbers exhibit two generations of pores, namely, large and small pores with diameters 40-240 and 14-54 µm, respectively. The sizes of both large and small pores decrease and approach each other as wR is increased. Four PAH compounds, namely, naphthalene, phenanthrene, fluoranthene, and pyrene with two to four aromatic rings, dissolved in filtered seawater with a salinity of 22 ppt were used to highlight the correlations between the properties of macroporous rubbers and their absorption rates and capacities. Nonporous silicone rubber reported before as a passive sampler has the lowest absorption rate and capacity as compared to the macroporous rubbers. The SN rubber absorbs most rapidly PAHs because of its largest porosity, whereas the TN rubber with the smallest pores exhibits the highest sorption capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...