Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925225

RESUMEN

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.

2.
Cells ; 11(7)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406763

RESUMEN

PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart. Consistent with this hypothesis, mice engineered to contain the M2241R mutation in PIEZO1 to mimic a DHS mutation had increased cardiac mass and interventricular septum thickness at 8-12 weeks of age, without altered cardiac contractility. Myocyte size was greater and there was increased expression of genes associated with cardiac hypertrophy (Anp, Acta1 and ß-MHC). There was also cardiac fibrosis, increased expression of Col3a1 (a gene associated with fibrosis) and increased responses of isolated cardiac fibroblasts to PIEZO1 agonism. The data suggest detrimental effects of excess PIEZO1 activity on the heart, mediated in part by amplified PIEZO1 function in cardiac fibroblasts.


Asunto(s)
Cardiomegalia , Mutación con Ganancia de Función , Canales Iónicos , Animales , Cardiomegalia/genética , Fibrosis , Canales Iónicos/genética , Ratones
3.
Cells ; 10(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34943783

RESUMEN

MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3' untranslated region (3'-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.


Asunto(s)
Proliferación Celular/genética , MicroARNs/genética , Neoplasias/genética , Apoptosis/genética , Cardiotónicos/metabolismo , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/patología
4.
Cells ; 10(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34831181

RESUMEN

Coagulation factor (F) Xa induces proinflammatory responses through activation of protease-activated receptors (PARs). However, the effect of FXa on cardiac fibroblasts (CFs) and the contribution of PARs in FXa-induced cellular signalling in CF has not been fully characterised. To answer these questions, human and rat CFs were incubated with FXa (or TRAP-14, PAR-1 agonist). Gene expression of pro-fibrotic and proinflammatory markers was determined by qRT-PCR after 4 and 24 h. Gene silencing of F2R (PAR-1) and F2RL1 (PAR-2) was achieved using siRNA. MCP-1 protein levels were measured by ELISA of FXa-conditioned media at 24 h. Cell proliferation was assessed after 24 h of incubation with FXa ± SCH79797 (PAR-1 antagonist). In rat CFs, FXa induced upregulation of Ccl2 (MCP-1; >30-fold at 4 h in atrial and ventricular CF) and Il6 (IL-6; ±7-fold at 4 h in ventricular CF). Increased MCP-1 protein levels were detected in FXa-conditioned media at 24 h. In human CF, FXa upregulated the gene expression of CCL2 (>3-fold) and IL6 (>4-fold) at 4 h. Silencing of F2R (PAR-1 gene), but not F2RL1 (PAR-2 gene), downregulated this effect. Selective activation of PAR-1 by TRAP-14 increased CCL2 and IL6 gene expression; this was prevented by F2R (PAR-1 gene) knockdown. Moreover, SCH79797 decreased FXa-induced proliferation after 24 h. In conclusion, our study shows that FXa induces overexpression of proinflammatory genes in human CFs via PAR-1, which was found to be the most abundant PARs isoform in this cell type.


Asunto(s)
Factor Xa/metabolismo , Fibroblastos/patología , Inflamación/patología , Miocardio/metabolismo , Receptor PAR-1/metabolismo , Adulto , Animales , Bovinos , Proliferación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fibroblastos/metabolismo , Atrios Cardíacos/patología , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Ratas Wistar , Receptor PAR-1/agonistas , Receptor PAR-1/genética , Trombina/metabolismo , Regulación hacia Arriba/genética
5.
Cells ; 10(7)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34359915

RESUMEN

In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of Nppb, as well as induction of genes related to myofibroblast differentiation. Moreover, BNP protein secretion was upregulated 5.3-fold in stretched cardiac fibroblasts. Recombinant BNP inhibited TGFß1-induced Acta2 expression. Nppb expression was >20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Miocardio/citología , Receptores del Factor Natriurético Atrial/genética , Estrés Mecánico , Animales , Fibroblastos/efectos de los fármacos , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores del Factor Natriurético Atrial/metabolismo , Proteínas Recombinantes/farmacología
6.
Cells ; 10(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922466

RESUMEN

Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.


Asunto(s)
Reprogramación Celular , Matriz Extracelular/fisiología , Fibroblastos/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular , Miocitos Cardíacos/fisiología , Animales , Señalización del Calcio , Fibroblastos/citología , Humanos , Miocitos Cardíacos/citología
7.
Cells ; 10(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923614

RESUMEN

Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.


Asunto(s)
Senescencia Celular , Daño del ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , MicroARNs/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Anciano , Efecto Espectador/efectos de los fármacos , Efecto Espectador/genética , Senescencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , MicroARNs/genética , Miocitos del Músculo Liso/efectos de los fármacos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
J Biol Chem ; 294(46): 17395-17408, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586031

RESUMEN

Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/- cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling.


Asunto(s)
Interleucina-6/genética , Canales Iónicos/genética , Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Señalización del Calcio/genética , Endopeptidasas/genética , Células Endoteliales/química , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/química , Canales Iónicos/química , Sistema de Señalización de MAP Quinasas/genética , Mecanotransducción Celular/genética , Ratones , Miocardio/química , Fosforilación/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Tioléster Hidrolasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/química
9.
J Cardiovasc Dev Dis ; 6(3)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394846

RESUMEN

The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.

10.
JCI Insight ; 52019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393855

RESUMEN

It has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO). A tamoxifen-inducible fibroblast-specific IL-1R1 hemizygous KO mouse line (FIL1R1KO) was also generated. Mice underwent experimental MI (permanent left anterior descending coronary artery ligation) and cardiac function was determined 4 weeks later by conductance pressure-volume catheter analysis. Molecular markers of remodeling were evaluated at various time points by real-time RT-PCR and histology. MIL1AKO mice showed no difference in cardiac function or molecular markers of remodeling post-MI compared with littermate controls. In contrast, FIL1R1KO mice showed improved cardiac function and reduced remodeling markers post-MI compared with littermate controls. In conclusion, these data highlight a key role for the IL-1R1/cardiac fibroblast signaling axis in regulating post-MI remodeling and provide support for the continued development of anti-IL-1 therapies for improving cardiac function after MI. Cardiomyocyte-derived IL-1α was not an important contributor to post-MI remodeling in this model.


Asunto(s)
Fibroblastos/metabolismo , Infarto del Miocardio/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Remodelación Ventricular/fisiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Insuficiencia Cardíaca , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transducción de Señal
12.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29775649

RESUMEN

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Receptor Toll-Like 4/biosíntesis , Animales , Células Cultivadas , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética
13.
IUBMB Life ; 70(7): 649-657, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29659130

RESUMEN

Cardiovascular disease is a leading cause of morbidity and mortality. Smooth muscle cells (SMC) comprising the vascular wall can switch phenotypes from contractile to synthetic, which can promote the development of aberrant remodelling and intimal hyperplasia (IH). MicroRNA-21 (miR-21) is a short, non-coding RNA that has been implicated in cardiovascular diseases including proliferative vascular disease and ischaemic heart disease. However, its involvement in the complex development of atherosclerosis has yet to be ascertained. Smooth muscle cells (SMC) were isolated from human saphenous veins (SV). miR-21 was over-expressed and the impact of this on morphology, proliferation, gene and protein expression related to synthetic SMC phenotypes monitored. Over-expression of miR-21 increased the spread cell area and proliferative capacity of SV-SMC and expression of MMP-1, whilst reducing RECK protein, indicating a switch to the synthetic phenotype. Furthermore, platelet-derived growth factor BB (PDGF-BB; a growth factor implicated in vasculoproliferative conditions) was able to induce miR-21 expression via the PI3K and ERK signalling pathways. This study has revealed a mechanism whereby PDGF-BB induces expression of miR-21 in SV-SMC, subsequently driving conversion to a synthetic SMC phenotype, propagating the development of IH. Thus, these signaling pathways may be attractive therapeutic targets to minimise progression of the disease. © 2018 IUBMB Life, 70(7):649-657, 2018.


Asunto(s)
MicroARNs/genética , Músculo Liso Vascular/citología , Vena Safena/citología , Aterosclerosis/genética , Becaplermina/farmacología , Células Cultivadas , Puente de Arteria Coronaria , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-1alfa/genética , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Fenotipo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vena Safena/fisiología
14.
FASEB J ; 32(9): 4941-4954, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29601781

RESUMEN

Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the ß-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.


Asunto(s)
Fibroblastos/efectos de los fármacos , Interleucina-6/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Noqueados , Miocardio/patología
15.
J Endocrinol ; 233(3): 315-327, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28522730

RESUMEN

We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11ß-HSD1-deficient (Hsd11b1-/- ) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11ß-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11ß-HSD1 in 'host' myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1-/- mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1-/- mice post MI and provision of either corticosterone or of the 11ß-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5 These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11ß-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Quimiocina CXCL2/metabolismo , Quimiocina CXCL5/metabolismo , Fibroblastos/fisiología , Neutrófilos/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Animales , Células de la Médula Ósea , Células Cultivadas , Quimiocina CXCL5/genética , Corticosterona/análogos & derivados , Corticosterona/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Infarto del Miocardio
16.
Diab Vasc Dis Res ; 14(2): 122-129, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28185533

RESUMEN

Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus-smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus-smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs -112 and -106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus-smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus-smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Regiones Promotoras Genéticas , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Células Cultivadas , Islas de CpG , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Fenotipo , Vena Safena/metabolismo , Regulación hacia Arriba
17.
World J Cardiol ; 8(5): 340-50, 2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27231521

RESUMEN

AIM: To investigate the effect of Tenascin C (TNC) on the expression of pro-inflammatory cytokines and matrix metalloproteinases in human cardiac myofibroblasts (CMF). METHODS: CMF were isolated and cultured from patients undergoing coronary artery bypass grafting. Cultured cells were treated with either TNC (0.1 µmol/L, 24 h) or a recombinant protein corresponding to different domains of the TNC protein; fibrinogen-like globe (FBG) and fibronectin type III-like repeats (TNIII 5-7) (both 1 µmol/L, 24 h). The expression of the pro-inflammatory cytokines; interleukin (IL)-6, IL-1ß, TNFα and the matrix metalloproteinases; MMPs (MMP1, 2, 3, 9, 10, MT1-MMP) was assessed using real time RT-PCR and western blot analysis. RESULTS: TNC increased both IL-6 and MMP3 (P < 0.01) mRNA levels in cultured human CMF but had no significant effect on the other markers studied. The increase in IL-6 mRNA expression was mirrored by an increase in protein secretion as assessed by enzyme-linked immunosorbant assay (P < 0.01). Treating CMF with the recombinant protein FBG increased IL-6 mRNA and protein (P < 0.01) whereas the recombinant protein TNIII 5-7 had no effect. Neither FBG nor TNIII 5-7 had any significant effect on MMP3 expression. The expression of toll-like receptor 4 (TLR4) in human CMF was confirmed by real time RT-PCR, western blot and immunohistochemistry. Pre-incubation of cells with TLR4 neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mRNA and protein expression. CONCLUSION: TNC up-regulates IL-6 expression in human CMF, an effect mediated through the FBG domain of TNC and via the TLR4 receptor.

18.
J Mol Cell Cardiol ; 94: 189-200, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26542796

RESUMEN

Cardiac fibroblasts (CF) are well-established as key regulators of extracellular matrix (ECM) turnover in the context of myocardial remodelling and fibrosis. Recently, this cell type has also been shown to act as a sensor of myocardial damage by detecting and responding to damage-associated molecular patterns (DAMPs) upregulated with cardiac injury. CF express a range of innate immunity pattern recognition receptors (TLRs, NLRs, IL-1R1, RAGE) that are stimulated by a host of different DAMPs that are evident in the injured or remodelling myocardium. These include intracellular molecules released by necrotic cells (heat shock proteins, high mobility group box 1 protein, S100 proteins), proinflammatory cytokines (interleukin-1α), specific ECM molecules up-regulated in response to tissue injury (fibronectin-EDA, tenascin-C) or molecules modified by a pathological environment (advanced glycation end product-modified proteins observed with diabetes). DAMP receptor activation on fibroblasts is coupled to altered cellular function including changes in proliferation, migration, myofibroblast transdifferentiation, ECM turnover and production of fibrotic and inflammatory paracrine factors, which directly impact on the heart's ability to respond to injury. This review gives an overview of the important role played by CF in responding to myocardial DAMPs and how the DAMP/CF axis could be exploited experimentally and therapeutically.


Asunto(s)
Alarminas/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Alarminas/genética , Animales , Biomarcadores , Humanos , Inflamasomas/metabolismo , Miocardio/patología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Remodelación Ventricular/genética
19.
J Invest Dermatol ; 135(12): 2935-2943, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26288353

RESUMEN

IFNλ is important for epidermal defense against viruses. It is produced by, and acts on, keratinocytes, whereas fibroblasts were previously considered to be unresponsive to this type III IFN. Herein we report findings revealing cell type-specific differences in IFNλ signaling and function in skin resident cells. In dermal fibroblasts, IFNλ induced the expression of myxovirus protein A (MxA), a potent antiviral factor, but not other IFN signature genes as it does in primary keratinocytes. In contrast to its effect on keratinocytes, IFNλ did not phosphorylate signal transducer and activator of transcription 1 in fibroblasts, but instead activated mitogen activated protein kinases (MAPK). Accordingly, inhibition of MAPK activation (p38 and p42/44) blocked the expression of MxA protein in fibroblasts but not in keratinocytes. Functionally, IFNλ inhibited proliferation in keratinocytes but not in fibroblasts. Moreover, IFNλ upregulated the expression of Tumor growth factor beta 1 (TGFß1)-induced collagens in fibroblasts. Taken together, our findings identify primary human dermal fibroblasts as responder cells to IFNλ. Our study shows cutaneous cell type-specific IFN signaling and suggests that IFNλ, although important for epidermal antiviral competence, may also have a regulatory role in the dermal compartment balancing type I IFN-induced inhibition of tissue repair processes.


Asunto(s)
Interferón gamma/farmacología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas de Resistencia a Mixovirus/biosíntesis , Factor de Transcripción STAT1/fisiología , Piel/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interferón-alfa/farmacología , Receptores de Interferón/fisiología , Piel/citología , Factor de Crecimiento Transformador beta1/farmacología , Receptor de Interferón gamma
20.
Dis Model Mech ; 8(8): 783-94, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092119

RESUMEN

Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfß. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention.


Asunto(s)
Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptor de Angiotensina Tipo 1/metabolismo , Disfunción Ventricular/patología , Remodelación Ventricular , Angiotensina II/farmacología , Animales , Muerte Celular/efectos de los fármacos , Fibrosis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Pruebas de Función Cardíaca , Humanos , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Transgenes , Disfunción Ventricular/complicaciones , Disfunción Ventricular/metabolismo , Disfunción Ventricular/fisiopatología , Remodelación Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...