Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Neuroimage Rep ; 4(1)2024 Mar.
Article En | MEDLINE | ID: mdl-38558768

Introduction: Although cerebral edema is common following traumatic brain injury (TBI), its formation and progression are poorly understood. This is especially true for the mild TBI population, who rarely undergo magnetic resonance imaging (MRI) studies, which can pick up subtle structural details not visualized on computed tomography, in the first few days after injury. This study aimed to visually classify and quantitatively measure edema progression in relation to traumatic microbleeds (TMBs) in a cohort of primarily mild TBI patients up to 30 days after injury. Researchers hypothesized that hypointense lesions on Apparent Diffusion Coefficient (ADC) detected acutely after injury would evolve into hyperintense Fluid Attenuated Inversion Recover (FLAIR) lesions. Methods: This study analyzed the progression of cerebral edema after acute injury using multimodal MRI to classify TMBs as potential edema-related biomarkers. ADC and FLAIR MRI were utilized for edema classification at three different timepoints: ≤48 hours, ~1 week, and 30 days after injury. Hypointense lesions on ADC (ADC+) suggested the presence of cytotoxic edema while hyperintense lesions on FLAIR (FLAIR+) suggested vasogenic edema. Signal intensity Ratio (SIR) calculations were made using ADC and FLAIR to quantitatively confirm edema progression. Results: Our results indicated the presence of ADC+ lesions ≤48 hours and ~1 week were associated with FLAIR+ lesions at ~1 week and 30 days, respectively, suggesting some progression of cytotoxic edema to vasogenic edema over time. Ten out of 15 FLAIR+ lesions at 30 days (67%) were ADC+ ≤48 hours. However, ADC+ lesions ≤48 hours were not associated with FLAIR+ lesions at 30 days; 10 out of 25 (40%) ADC+ lesions ≤48 hours were FLAIR+ at 30 days, which could indicate that some lesions resolved or were not visualized due to associated atrophy or tissue necrosis. Quantitative analysis confirmed the visual progression of some TMB lesions from ADC+ to FLAIR+. FLAIR SIRs at ~1 week were significantly higher when lesions were ADC+ ≤48 hours (1.22 [1.08-1.32] vs 1.03 [0.97-1.11], p=0.002). Conclusion: Awareness of how cerebral edema can evolve in proximity to TMBs acutely after injury may facilitate identification and monitoring of patients with traumatic cerebrovascular injury and assist in development of novel therapeutic strategies.

2.
JAMA ; 331(13): 1109-1121, 2024 04 02.
Article En | MEDLINE | ID: mdl-38497797

Importance: Since 2015, US government and related personnel have reported dizziness, pain, visual problems, and cognitive dysfunction after experiencing intrusive sounds and head pressure. The US government has labeled these anomalous health incidents (AHIs). Objective: To assess whether participants with AHIs differ significantly from US government control participants with respect to clinical, research, and biomarker assessments. Design, Setting, and Participants: Exploratory study conducted between June 2018 and July 2022 at the National Institutes of Health Clinical Center, involving 86 US government staff and family members with AHIs from Cuba, Austria, China, and other locations as well as 30 US government control participants. Exposures: AHIs. Main Outcomes and Measures: Participants were assessed with extensive clinical, auditory, vestibular, balance, visual, neuropsychological, and blood biomarkers (glial fibrillary acidic protein and neurofilament light) testing. The patients were analyzed based on the risk characteristics of the AHI identifying concerning cases as well as geographic location. Results: Eighty-six participants with AHIs (42 women and 44 men; mean [SD] age, 42.1 [9.1] years) and 30 vocationally matched government control participants (11 women and 19 men; mean [SD] age, 43.8 [10.1] years) were included in the analyses. Participants with AHIs were evaluated a median of 76 days (IQR, 30-537) from the most recent incident. In general, there were no significant differences between participants with AHIs and control participants in most tests of auditory, vestibular, cognitive, or visual function as well as levels of the blood biomarkers. Participants with AHIs had significantly increased fatigue, depression, posttraumatic stress, imbalance, and neurobehavioral symptoms compared with the control participants. There were no differences in these findings based on the risk characteristics of the incident or geographic location of the AHIs. Twenty-four patients (28%) with AHI presented with functional neurological disorders. Conclusions and Relevance: In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for objective and self-reported measures of imbalance and symptoms of fatigue, posttraumatic stress, and depression. This study did not replicate the findings of previous studies, although differences in the populations included and the timing of assessments limit direct comparisons.


Family , Government , Male , Humans , Female , Adult , Biomarkers , Fatigue , Security Measures
3.
JAMA ; 331(13): 1122-1134, 2024 04 02.
Article En | MEDLINE | ID: mdl-38497822

Importance: US government personnel stationed internationally have reported anomalous health incidents (AHIs), with some individuals experiencing persistent debilitating symptoms. Objective: To assess the potential presence of magnetic resonance imaging (MRI)-detectable brain lesions in participants with AHIs, with respect to a well-matched control group. Design, Setting, and Participants: This exploratory study was conducted at the National Institutes of Health (NIH) Clinical Center and the NIH MRI Research Facility between June 2018 and November 2022. Eighty-one participants with AHIs and 48 age- and sex-matched control participants, 29 of whom had similar employment as the AHI group, were assessed with clinical, volumetric, and functional MRI. A high-quality diffusion MRI scan and a second volumetric scan were also acquired during a different session. The structural MRI acquisition protocol was optimized to achieve high reproducibility. Forty-nine participants with AHIs had at least 1 additional imaging session approximately 6 to 12 months from the first visit. Exposure: AHIs. Main Outcomes and Measures: Group-level quantitative metrics obtained from multiple modalities: (1) volumetric measurement, voxel-wise and region of interest (ROI)-wise; (2) diffusion MRI-derived metrics, voxel-wise and ROI-wise; and (3) ROI-wise within-network resting-state functional connectivity using functional MRI. Exploratory data analyses used both standard, nonparametric tests and bayesian multilevel modeling. Results: Among the 81 participants with AHIs, the mean (SD) age was 42 (9) years and 49% were female; among the 48 control participants, the mean (SD) age was 43 (11) years and 42% were female. Imaging scans were performed as early as 14 days after experiencing AHIs with a median delay period of 80 (IQR, 36-544) days. After adjustment for multiple comparisons, no significant differences between participants with AHIs and control participants were found for any MRI modality. At an unadjusted threshold (P < .05), compared with control participants, participants with AHIs had lower intranetwork connectivity in the salience networks, a larger corpus callosum, and diffusion MRI differences in the corpus callosum, superior longitudinal fasciculus, cingulum, inferior cerebellar peduncle, and amygdala. The structural MRI measurements were highly reproducible (median coefficient of variation <1% across all global volumetric ROIs and <1.5% for all white matter ROIs for diffusion metrics). Even individuals with large differences from control participants exhibited stable longitudinal results (typically, <±1% across visits), suggesting the absence of evolving lesions. The relationships between the imaging and clinical variables were weak (median Spearman ρ = 0.10). The study did not replicate the results of a previously published investigation of AHIs. Conclusions and Relevance: In this exploratory neuroimaging study, there were no significant differences in imaging measures of brain structure or function between individuals reporting AHIs and matched control participants after adjustment for multiple comparisons.


Diffusion Tensor Imaging , White Matter , Humans , Female , Adult , Male , Diffusion Tensor Imaging/methods , Reproducibility of Results , Bayes Theorem , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , White Matter/pathology , Family , Government , Security Measures
4.
J Neurotrauma ; 38(22): 3107-3118, 2021 11 15.
Article En | MEDLINE | ID: mdl-34541886

Magnetic resonance imaging (MRI) is used rarely in the acute evaluation of traumatic brain injury (TBI) but may identify findings of clinical importance not detected by computed tomography (CT). We aimed to characterize the association of cytotoxic edema and hemorrhage, including traumatic microbleeds, on MRI obtained within hours of acute head trauma and investigated the relationship to clinical outcomes. Patients prospectively enrolled in the Traumatic Head Injury Neuroimaging Classification study (NCT01132937) with evidence of diffusion-related findings or hemorrhage on neuroimaging were included. Blinded interpretation of MRI for diffusion-weighted lesions and hemorrhage was conducted, with subsequent quantification of apparent diffusion coefficient (ADC) values. Of 161 who met criteria, 82 patients had conspicuous hyperintense lesions on diffusion-weighted imaging (DWI) with corresponding regions of hypointense ADC in proximity to hemorrhage. Median time from injury to MRI was 21 (10-30) h. Median ADC values per patient grouped by time from injury to MRI were lowest within 24 h after injury. The ADC values associated with hemorrhagic lesions are lowest early after injury, with an increase in diffusion during the subacute period, suggesting transformation from cytotoxic to vasogenic edema during the subacute post-injury period. Of 118 patients with outcome data, 60 had Glasgow Outcome Scale Extended scores ≤6 at 30/90 days post-injury. Cytotoxic edema on MRI (odds ratio [OR] 2.91 [1.32-6.37], p = 0.008) and TBI severity (OR 2.51 [1.32-4.74], p = 0.005) were independent predictors of outcome. These findings suggest that in patients with TBI who had findings of hemorrhage on CT, patients with DWI/ADC lesions on MRI are more likely to do worse.


Brain Edema/etiology , Brain Hemorrhage, Traumatic/complications , Brain Injuries, Traumatic/complications , Adolescent , Adult , Aged , Brain Edema/diagnostic imaging , Brain Hemorrhage, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Middle Aged , Odds Ratio , Outcome Assessment, Health Care , Predictive Value of Tests , Prospective Studies , Risk Factors , Time Factors , Young Adult
5.
Front Physiol ; 12: 649901, 2021.
Article En | MEDLINE | ID: mdl-34054569

OBJECTIVE: To characterize the relationship between persistent post-traumatic headache (pPTH) and traumatic cerebrovascular injury (TCVI) in chronic traumatic brain injury (TBI). Cerebrovascular reactivity (CVR), a measure of the cerebral microvasculature and endothelial cell function, is altered both in individuals with chronic TBI and migraine headache disorder (Amyot et al., 2017; Lee et al., 2019b). The pathophysiologies of pPTH and migraine are believed to be associated with chronic microvascular dysfunction. We therefore hypothesize that TCVI may contribute to the underlying migraine-like mechanism(s) of pPTH. MATERIALS AND METHODS: 22 moderate/severe TBI participants in the chronic stage (>6 months) underwent anatomic and functional magnetic resonance imaging (fMRI) scanning with hypercapnia gas challenge to measure CVR as well as the change in CVR (ΔCVR) after single-dose treatment of a specific phosphodiesterase-5 (PDE-5) inhibitor, sildenafil, which potentiates vasodilation in response to hypercapnia in impaired endothelium, as part of a Phase2a RCT of sildenafil in chronic TBI (NCT01762475). CVR and ΔCVR measures of each participant were compared with the individual's pPTH severity measured by the headache impact test-6 (HIT-6) survey. RESULTS: There was a moderate correlation between HIT-6 and both CVR and ΔCVR scores [Spearman's correlation = -0.50 (p = 0.018) and = 0.46 (p = 0.03), respectively], indicating that a higher headache burden is associated with decreased endothelial function in our chronic TBI population. CONCLUSION: There is a correlation between PTH and CVR in chronic moderate-severe TBI. This relationship suggests that chronic TCVI may underlie the pathobiology of pPTH. Further, our results suggest that novel treatment strategies that target endothelial function and vascular health may be beneficial in refractory pPTH.

6.
Alzheimers Dement ; 17(9): 1432-1441, 2021 09.
Article En | MEDLINE | ID: mdl-33687142

INTRODUCTION: Head injury is associated with significant morbidity and mortality. Long-term associations of head injury with dementia in community-based populations are less clear. METHODS: Prospective cohort study of 14,376 participants (mean age 54 years at baseline, 56% female, 27% Black, 24% with head injury) enrolled in the Atherosclerosis Risk in Communities (ARIC) Study. Head injury was defined using self-report and International Classification of Diseases, Ninth/Tenth Revision (ICD-9/10) codes. Dementia was defined using cognitive assessments, informant interviews, and ICD-9/10 and death certificate codes. RESULTS: Head injury was associated with risk of dementia (hazard ratio [HR] = 1.44, 95% confidence interval [CI] = 1.3-1.57), with evidence of dose-response (1 head injury: HR = 1.25, 95% CI = 1.13-1.39, 2+ head injuries: HR = 2.14, 95% CI = 1.86-2.46). There was evidence for stronger associations among female participants (HR = 1.69, 95% CI = 1.51-1.90) versus male participants (HR = 1.15, 95% CI = 1.00-1.32), P-for-interaction < .001, and among White participants (HR = 1.55, 95% CI = 1.40-1.72) versus Black participants (HR = 1.22, 95% CI = 1.02-1.45), P-for-interaction = .008. DISCUSSION: In this community-based cohort with 25-year follow-up, head injury was associated with increased dementia risk in a dose-dependent manner, with stronger associations among female participants and White participants.


Atherosclerosis/epidemiology , Craniocerebral Trauma/complications , Craniocerebral Trauma/ethnology , Dementia/epidemiology , Aged , Craniocerebral Trauma/mortality , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Sex Factors , Time Factors , United States/epidemiology
7.
J Head Trauma Rehabil ; 36(1): E1-E17, 2021 01 01.
Article En | MEDLINE | ID: mdl-33369993

In this report, we identify existing issues and challenges related to research on traumatic brain injury (TBI) in females and provide future directions for research. In 2017, the National Institutes of Health, in partnership with the Center for Neuroscience and Regenerative Medicine and the Defense and Veterans Brain Injury Center, hosted a workshop that focused on the unique challenges facing researchers, clinicians, patients, and other stakeholders regarding TBI in women. The goal of this "Understanding TBI in Women" workshop was to bring together researchers and clinicians to identify knowledge gaps, best practices, and target populations in research on females and/or sex differences within the field of TBI. The workshop, and the current literature, clearly highlighted that females have been underrepresented in TBI studies and clinical trials and have often been excluded (or ovariectomized) in preclinical studies. Such an absence in research on females has led to an incomplete, and perhaps inaccurate, understanding of TBI in females. The presentations and discussions centered on the existing knowledge regarding sex differences in TBI research and how these differences could be incorporated in preclinical and clinical efforts going forward. Now, a little over 2 years later, we summarize the issues and state of the science that emerged from the "Understanding TBI in Women" workshop while incorporating updates where they exist. Overall, despite some progress, there remains an abundance of research focused on males and relatively little explicitly on females.


Brain Injuries, Traumatic , Brain Injuries , Veterans , Brain , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Female , Humans , Male , Motivation
8.
PLoS One ; 15(7): e0234881, 2020.
Article En | MEDLINE | ID: mdl-32614835

Traumatic meningeal enhancement (TME) is a novel biomarker observed on post-contrast fluid-attenuated inversion recovery (FLAIR) in patients who undergo contrast-enhanced magnetic resonance imaging (MRI) after suspected traumatic brain injury (TBI). TME may be seen on acute MRI despite the absence of other trauma-related intracranial findings. In this study we compare conspicuity of TME on FLAIR post-contrast and T1 weighted imaging (T1WI) post-contrast, and investigate if TME is best detected by FLAIR post-contrast or T1WI post-contrast sequences. Subjects selected for analysis enrolled in the parent study (NCT01132937) in 2016 and underwent contrast-enhanced MRI within 48 hours of suspected TBI. Two blinded readers reviewed pairs of pre- and post-contrast T1WI and FLAIR images for presence or absence of TME. Discordant pairs between the two blinded readers were reviewed by a third reader. Cohen's kappa coefficient was used to calculate agreement. Twenty-five subjects (15 males, 10 females; median age 48 (Q1:35-Q3:62; IQR: 27)) were included. The blinded readers had high agreement for presence of TME on FLAIR (Kappa of 0.90), but had no agreement for presence of TME on T1WI (Kappa of -0.24). The FLAIR and T1WI scans were compared among all three readers and 62% of the cases positive on FLAIR could be seen on T1WI. However, 38% of the cases who were read positive on FLAIR for TME were read negative for TME on T1WI. Conspicuity of TME is higher on post-contrast FLAIR MRI than on post-contrast T1WI. TME as seen on post-contrast FLAIR MRI can aid in the identification of patients with TBI.


Brain Injuries, Traumatic/pathology , Magnetic Resonance Imaging/methods , Meninges/pathology , Neuroimaging/methods , Adult , Contrast Media , Female , Glasgow Coma Scale , Humans , Male , Meglumine/analogs & derivatives , Meninges/injuries , Middle Aged , Organometallic Compounds , Single-Blind Method , Subtraction Technique
9.
Front Neurol ; 11: 348, 2020.
Article En | MEDLINE | ID: mdl-32508732

Introduction: Elevated levels of blood-based proinflammatory cytokines are linked to acute moderate to severe traumatic brain injuries (TBIs), yet less is known in acute mild (m)TBI cohorts. The current study examined whether blood-based cytokines can differentiate patients with mTBI, with and without neuroimaging findings (CT and MRI). Material and Methods: Within 24 h of a mTBI, determined by a Glasgow Coma Scale (GCS) between 13 and 15, participants (n = 250) underwent a computed tomography (CT) and magnetic resonance imaging (MRI) scan and provided a blood sample. Participants were classified into three groups according to imaging findings; (1) CT+, (2) MRI+ (CT-), (3) Controls (CT- MRI-). Plasma levels of circulating cytokines (IL-6, IL-10, TNFα), and vascular endothelial growth factor (VEGF) were measured using an ultra-sensitive immunoassay. Results: Concentrations of inflammatory cytokines (IL-6, TNFα) and VEGF were elevated in CT+, as well as MRI+ groups (p < 0.001), compared to controls, even after controlling for age, sex and cardiovascular disease (CVD)-related risk factors; hypertension, and hyperlipidemia. Post-concussive symptoms were associated with imaging groupings, but not inflammatory cytokines in this cohort. Levels of VEGF, IL-6, and TNFα differentiated patients with CT+ findings from controls, with the combined biomarker model (VEGF, IL-6, TNFα, and IL-10) showing good discriminatory power (AUC 0.92, 95% CI 0.87-0.97). IL-6 was a fair predictor of MRI+ findings compared to controls (AUC 0.70, 95% CI 0.60-0.78). Finally, the combined biomarker model discriminated patients with MRI+ from CT+ with an AUC of 0.71 (95% CI 0.62-0.80). Conclusions: When combined, IL-6, TNFα, and VEGF may provide a promising biomarker cytokine panel to differentiate mTBI patients with CT+ imaging vs. controls. Singularly, IL-6 was a fair discriminator between each of the imaging groups. Future research directions may help elucidate mechanisms related to injury severity and potentially, recovery following an mTBI.

10.
Brain Inj ; 34(6): 773-781, 2020 05 11.
Article En | MEDLINE | ID: mdl-32228304

OBJECTIVE: The primary objective of this study was to track the incidence and progression of traumatic microbleeds (TMBs) for up to five years following traumatic brain injury (TBI). METHODS: Thirty patients with mild, moderate, or severe TBI received initial MRI within 48 h of injury and continued in a longitudinal study for up to five years. The incidence and progression of MRI findings was assessed across the five year period. In addition to TMBs, we noted the presence of other imaging findings including diffusion weighted imaging (DWI) lesions, extra-axial and intraventricular hemorrhage, hematoma, traumatic meningeal enhancement (TME), fluid-attenuated inversion recovery (FLAIR) hyperintensities, and encephalomalacia. RESULTS: TMBs were observed in 60% of patients at initial presentation. At one-year follow-up, TMBs were more persistent than other neuroimaging findings, with 83% remaining visible on MRI. In patients receiving serial MRI 2-5 years post-injury, acute TMBs were visible on all follow-up scans. In contrast, most other imaging markers of TBI had either resolved or evolved into ambiguous abnormalities on imaging by one year post-injury. CONCLUSIONS: These findings suggest that TMBs may serve as a uniquely persistent indicator of TBI and reinforce the importance of acute post-injury imaging for accurate characterization of persistent imaging findings.


Brain Injuries, Traumatic , Magnetic Resonance Imaging , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Humans , Longitudinal Studies , Neuroimaging
11.
J Neurotrauma ; 37(4): 600-607, 2020 02 15.
Article En | MEDLINE | ID: mdl-31642407

Biomarkers are needed to identify traumatic brain injury (TBI) patients at risk for accelerated brain volume loss and its associated functional impairment. Subarachnoid hemorrhage (SAH) has been shown to affect cerebral volume and perfusion, possibly by induction of inflammation and vasospasm. The purpose of this study was to assess the impact of SAH due to trauma on cerebral perfusion and brain volume. For this, magnetic resonance imaging (MRI) was performed <48 h and at 90 days after TBI. The <48-h scan was used to assess SAH presence and perfusion. Brain volume changes were assessed quantitatively over time. Differences in brain volume change and perfusion were compared between SAH and non-SAH patients. A linear regression analysis with clinical and imaging variables was used to identify predictors of brain volume change. All patients had a relatively good status on admission, and 83% presented with the maximum Glasgow Coma Scale (GCS) score. Brain volume decrease was greater in the 11 SAH patients (-3.2%, interquartile range [IQR] -4.8 to -1.3%) compared with the 46 non-SAH patients (-0.4%, IQR -1.8 to 0.9%; p < 0.001). Brain perfusion was not affected by SAH, but it was correlated with brain volume change (ρ = 0.39; p < 0.01). Forty-three percent of brain volume change was explained by SAH (ß -0.40, p = 0.001), loss of consciousness (ß -0.24, p = 0.035), and peak perfusion curve signal intensity height (0.27, p = 0.012). SAH and lower perfusion in the acute phase may identity TBI patients at increased risk for accelerated brain volume loss, in addition to loss of consciousness occurrence. Future studies should determine whether the findings apply to TBI patients with worse clinical status on admission. SAH predicts brain volume decrease independent of brain perfusion. This indicates the adverse effects of SAH extend beyond vasoconstriction, and that hypoperfusion also occurs separately from SAH.


Brain Concussion/pathology , Brain/pathology , Subarachnoid Hemorrhage/pathology , Adult , Aged , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size/physiology , Subarachnoid Hemorrhage/diagnostic imaging
12.
Brain ; 142(11): 3550-3564, 2019 11 01.
Article En | MEDLINE | ID: mdl-31608359

Traumatic microbleeds are small foci of hypointensity seen on T2*-weighted MRI in patients following head trauma that have previously been considered a marker of axonal injury. The linear appearance and location of some traumatic microbleeds suggests a vascular origin. The aims of this study were to: (i) identify and characterize traumatic microbleeds in patients with acute traumatic brain injury; (ii) determine whether appearance of traumatic microbleeds predict clinical outcome; and (iii) describe the pathology underlying traumatic microbleeds in an index patient. Patients presenting to the emergency department following acute head trauma who received a head CT were enrolled within 48 h of injury and received a research MRI. Disability was defined using Glasgow Outcome Scale-Extended ≤6 at follow-up. All magnetic resonance images were interpreted prospectively and were used for subsequent analysis of traumatic microbleeds. Lesions on T2* MRI were stratified based on 'linear' streak-like or 'punctate' petechial-appearing traumatic microbleeds. The brain of an enrolled subject imaged acutely was procured following death for evaluation of traumatic microbleeds using MRI targeted pathology methods. Of the 439 patients enrolled over 78 months, 31% (134/439) had evidence of punctate and/or linear traumatic microbleeds on MRI. Severity of injury, mechanism of injury, and CT findings were associated with traumatic microbleeds on MRI. The presence of traumatic microbleeds was an independent predictor of disability (P < 0.05; odds ratio = 2.5). No differences were found between patients with punctate versus linear appearing microbleeds. Post-mortem imaging and histology revealed traumatic microbleed co-localization with iron-laden macrophages, predominately seen in perivascular space. Evidence of axonal injury was not observed in co-localized histopathological sections. Traumatic microbleeds were prevalent in the population studied and predictive of worse outcome. The source of traumatic microbleed signal on MRI appeared to be iron-laden macrophages in the perivascular space tracking a network of injured vessels. While axonal injury in association with traumatic microbleeds cannot be excluded, recognizing traumatic microbleeds as a form of traumatic vascular injury may aid in identifying patients who could benefit from new therapies targeting the injured vasculature and secondary injury to parenchyma.


Brain Injuries, Traumatic/diagnostic imaging , Disability Evaluation , Intracranial Hemorrhages/diagnostic imaging , Vascular System Injuries/diagnostic imaging , Vascular System Injuries/pathology , Adolescent , Adult , Autopsy , Axons/pathology , Brain Injuries, Traumatic/pathology , Female , Glasgow Outcome Scale , Humans , Intracranial Hemorrhages/pathology , Iron/blood , Macrophages/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Tomography, X-Ray Computed , Treatment Outcome
13.
J Neurotrauma ; 36(17): 2549-2557, 2019 09 01.
Article En | MEDLINE | ID: mdl-30963804

Our objective was to examine associations of head injury with total and regional brain amyloid deposition. We performed cross-sectional analyses of 329 non-demented participants (81 with prior head injury) in the Atherosclerosis Risk in Communities-Positron Emission Tomography (ARIC-PET) Study who underwent 18-florbetapir PET imaging in 2012-2014. A history of head injury was defined by self-report or emergency department/hospitalization International Classification of Diseases, Ninth Revision codes. Generalized linear regression models adjusted for demographic, socioeconomic, and dementia/cardiovascular risk factors were used to estimate prevalence ratios (PRs; 95% confidence intervals [CIs]) for elevated (> 1.2) global and regional standard uptake value ratios (SUVRs). Mean age of participants was 76 years, 57% were women, and 43% were black. Head injury was associated with increased prevalence of elevated SUVR >1.2 globally (PR: 1.31; 95% CI: 1.19-1.57), as well as in the orbitofrontal cortex (PR: 1.23); (95% CI: 1.04-1.46), prefrontal cortex (PR: 1.18; 95% CI: 1.00-1.39), superior frontal cortex (PR: 1.24; 95% CI: 1.05-1.48), and posterior cingulate (PR: 1.26; 95% CI: 1.04-1.52). There also was evidence for a dose-response relationship, whereby a history of ≥1 head injury was associated with elevated SUVR >1.2 in the prefrontal cortex and superior frontal cortex compared with persons with a history of one head injury (all, p < 0.05). In conclusion, head injury was associated with increased amyloid deposition globally and in the frontal cortex and posterior cingulate, with suggestion of a dose-response association of head injuries with beta-amyloid deposition. Further work is needed to determine if increased amyloid deposition contributes to dementia in this population.


Amyloid , Brain/pathology , Craniocerebral Trauma/complications , Aged , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods
14.
J Neurotrauma ; 36(8): 1335-1342, 2019 04 15.
Article En | MEDLINE | ID: mdl-30351183

Accurate diagnosis of traumatic brain injury (TBI) is critical to ensure that patients receive appropriate follow-up care, avoid risk of subsequent injury, and are aware of possible long-term consequences. However, diagnosis of TBI, particularly in the emergency department (ED), can be difficult because the symptoms of TBI are vague and nonspecific, and patients with suspected TBI may present with additional injuries that require immediate medical attention. We performed a retrospective chart review to evaluate accuracy of TBI diagnosis in the ED. Records of 1641 patients presenting to the ED with suspected TBI and a head computed tomography (CT) were reviewed. We found only 47% of patients meeting the American Congress of Rehabilitation Medicine criteria for TBI received a documented ED diagnosis of TBI in medical records. After controlling for demographic and clinical factors, patients presenting at a level I trauma center, with cause of injury other than fall, without CT findings of TBI, and without loss of consciousness were more likely to lack documented diagnosis despite meeting diagnostic criteria for TBI. A greater proportion of patients without documented ED diagnosis of TBI were discharged home compared to those with a documented diagnosis of TBI (58% vs. 40%; p < 0.001). Together, these data suggest that many patients who have sustained a TBI are discharged home from the ED without a documented diagnosis of TBI, and that improved awareness and implementation of diagnostic criteria for TBI is important in the ED and for in- and outpatient providers.


Brain Injuries, Traumatic/diagnosis , Emergency Service, Hospital/standards , Neurology/standards , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
15.
Ann Clin Transl Neurol ; 5(4): 418-428, 2018 Apr.
Article En | MEDLINE | ID: mdl-29687019

BACKGROUND: Traumatic cerebrovascular injury (TCVI), a common consequence of traumatic brain injury (TBI), presents an attractive therapeutic target. Because phosphodiesterase-5 (PDE5) inhibitors potentiate the action of nitric oxide (NO) produced by endothelial cells, they are candidate therapies for TCVI. This study aims to: (1) measure cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and change in CVR after a single dose of sildenafil (ΔCVR) in chronic TBI compared to uninjured controls; (2) examine the safety and tolerability of 8-week sildenafil administration in chronic symptomatic moderate/severe TBI patients; and as an exploratory aim, (3) assess the effect of an 8-week course of sildenafil on chronic TBI symptoms. METHODS: Forty-six subjects (31 chronic TBI, 15 matched healthy volunteers) were enrolled. Baseline CBF and CVR before and after administration of sildenafil were measured. Symptomatic TBI subjects then completed an 8-week double-blind, placebo-controlled, crossover trial of sildenafil. A neuropsychological battery and neurobehavioral symptom questionnaires were administered at each study visit. RESULTS: After a single dose of sildenafil, TBI subjects showed a significant increase in global CVR compared to healthy controls (P < 0.001, d = 0.9). Post-sildenafil CVR maps showed near-normalization of CVR in many regions where baseline CVR was low, predominantly within areas without structural abnormalities. Sildenafil was well tolerated. Clinical Global Impression (CGI) scale showed a trend toward clinical improvement while on sildenafil treatment. FINDINGS: Single-dose sildenafil improves regional CVR deficits in chronic TBI patients. CVR and ΔCVR are potential predictive and pharmacodynamic biomarkers of PDE5 inhibitor therapy for TCVI. Sildenafil is a potential therapy for TCVI.

16.
J Neurotrauma ; 35(10): 1116-1123, 2018 05 15.
Article En | MEDLINE | ID: mdl-29065769

Traumatic cerebrovascular injury (TCVI) is a common pathologic mechanism of traumatic brain injury (TBI) and presents an attractive target for intervention. The aims of this study were to assess cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) using magnetic resonance imaging (MRI) to assess their value as biomarkers of TCVI in chronic TBI, characterize the spatial distribution of TCVI, and assess the relationships between each biomarker and neuropsychological and clinical assessments. Forty-two subjects (27 chronic TBI, 15 age- and gender-matched healthy volunteers) were studied cross-sectionally. CBF was measured by arterial spin labeling and CVR by assessing the MRI-blood oxygen level-dependent signal with hypercapnia challenge. A focused neuropsychological battery adapted from the TBI Common Data Elements and neurobehavioral symptom questionnaires were administered at the time of the imaging session. Chronic TBI subjects showed a significant reduction in mean global, gray matter (GM), and white matter (WM) CVR, compared with healthy volunteers (p < 0.001). Mean GM CVR had the greatest effect size (Cohen's d = 0.9). CVR maps in chronic TBI subjects showed patchy, multifocal CVR deficits. CBF discriminated poorly between TBI subjects and healthy volunteers and did not correlate with CVR. Mean global CVR correlated best with chronic neurobehavioral symptoms among TBI subjects. Global, GM, and WM CVR are reliable and potentially useful biomarkers of TCVI in the chronic stage after moderate-to-severe TBI. CBF is less useful as biomarker of TCVI. CVR correlates best with chronic TBI symptoms. CVR has potential as a predictive and pharmacodynamic biomarker for interventions targeting TCVI.


Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Brain Injury, Chronic/diagnostic imaging , Brain Injury, Chronic/physiopathology , Cerebrovascular Circulation/physiology , Adult , Cross-Sectional Studies , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Middle Aged
17.
Curr Protoc Neurosci ; 81: 9.62.1-9.62.12, 2017 Oct 23.
Article En | MEDLINE | ID: mdl-29058772

Traumatic brain injury (TBI) is a major cause of death and disability world-wide. Following initial injury, TBI patients can face long-term disability in the form of cognitive, physical, and psychological deficits, depending on the severity and location of injury. This results in an economic burden in the United States estimated to be $60 billion due to health-care costs and loss of productivity. TBI is a significant area of active research interest for both military and civilian medicine. Numerous pre-clinical animal models of TBI are used to characterize the anatomical and physiological pathways involved and to evaluate therapeutic interventions. Due to its flexibility and scalability, controlled cortical impact (CCI) is one of the most commonly used preclinical TBI models. This unit provides a basic CCI protocol performed in the rat. © 2017 by John Wiley & Sons, Inc.


Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Animals , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Disease Models, Animal , Female , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Time Factors
18.
J Neurotrauma ; 34(1): 248-256, 2017 01 01.
Article En | MEDLINE | ID: mdl-26905805

Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.


Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Hydrocephalus/diagnostic imaging , Animals , Brain/pathology , Brain Concussion/pathology , Female , Hydrocephalus/pathology , Rats , Rats, Wistar
19.
J Neurotrauma ; 34(8): 1539-1545, 2017 04 15.
Article En | MEDLINE | ID: mdl-27927083

This study examined whether peripheral vision reaction time (PVRT) in patients with mild traumatic brain injury (mTBI) correlated with white matter abnormalities in centroaxial structures and impairments in neuropsychological testing. Within 24 h after mTBI, crossed reaction times (CRT), uncrossed reaction times (URT), and crossed-uncrossed difference (CUD) were measured in 23 patients using a laptop computer that displayed visual stimuli predominantly to either the left or the right visual field of the retina. The CUD is a surrogate marker of the interhemispheric transfer time (ITT). Within 7 days after the injury, patients received a diffusion tensor-MRI (DTI) scan and a battery of neuropsychological tests. Nine uninjured control subjects received similar testing. Patients 18-50 years of age were included if they had a post-resuscitation Glasgow Coma Scale >13 and an injury mechanism compatible with mTBI. Healthy controls were either age- and gender-matched family members of the TBI patients or healthy volunteers. CUD deficits >2 standard deviations (SD) were seen in 40.9% of patients. The CUD of injured patients correlated with mean diffusivity (MD) (p < 0.001, ρ = -0.811) in the posterior corpus callosum. Patients could be stratified on the basis of CUD on the Stroop 1, Controlled Oral Word Association Test (COWAT), and the obsessive-compulsive component of the Basic Symptom Inventory tests. These studies suggest that the PVRT indirectly measures white matter integrity in the posterior corpus callosum, a brain region frequently damaged by mTBI.


Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Cognitive Dysfunction/physiopathology , Corpus Callosum/diagnostic imaging , Psychomotor Performance/physiology , Vision Disorders/physiopathology , Visual Perception/physiology , White Matter/diagnostic imaging , Adolescent , Adult , Brain Concussion/complications , Cognitive Dysfunction/etiology , Diffusion Tensor Imaging , Female , Glasgow Coma Scale , Humans , Male , Middle Aged , Reaction Time/physiology , Vision Disorders/etiology , Visual Field Tests , Young Adult
20.
Front Aging Neurosci ; 8: 168, 2016.
Article En | MEDLINE | ID: mdl-27468266

Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-ß superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging.

...