Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1169135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293203

RESUMEN

S. epidermidis is an important opportunistic pathogen causing chronic prosthetic joint infections associated with biofilm growth. Increased tolerance to antibiotic therapy often requires prolonged treatment or revision surgery. Phage therapy is currently used as compassionate use therapy and continues to be evaluated for its viability as adjunctive therapy to antibiotic treatment or as an alternative treatment for infections caused by S. epidermidis to prevent relapses. In the present study, we report the isolation and in vitro characterization of three novel lytic S. epidermidis phages. Their genome content analysis indicated the absence of antibiotic resistance genes and virulence factors. Detailed investigation of the phage preparation indicated the absence of any prophage-related contamination and demonstrated the importance of selecting appropriate hosts for phage development from the outset. The isolated phages infect a high proportion of clinically relevant S. epidermidis strains and several other coagulase-negative species growing both in planktonic culture and as a biofilm. Clinical strains differing in their biofilm phenotype and antibiotic resistance profile were selected to further identify possible mechanisms behind increased tolerance to isolated phages.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones Estafilocócicas , Humanos , Bacteriófagos/genética , Staphylococcus epidermidis , Antibacterianos/farmacología , Biopelículas , Fagos de Staphylococcus/genética
2.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560241

RESUMEN

Green coffee beans are particularly rich in chlorogenic acids (CGAs), and their identification and quantification are usually performed by HPLC, coupled with mass spectrometry (LC-MS). Although there are a few examples of molecularly imprinted polymers (MIPs) for chlorogenic acid (5-CQA) recognition present in the literature, none of them are based on optical fluorescence, which is very interesting given its great sensitivity. In the present manuscript, fluorescent polymeric imprinted nanoparticles were synthetized following the non-covalent approach using hydrogenated 5-O-caffeoylquinic acid (H-5-CQA) as the template. The capability of the polymer to bind 5-CQA was evaluated by HPLC and fluorescence. A real sample of coffee extract was also analyzed to verify the selectivity of the polymer. Polymer fMIP01, containing 4-vinylpyridine and a naphtalimide derivative as monomers, showed a good response to the fluorescence quenching in the range 39 µM-80 mM. In the real sample, fMIP01 was able to selectively bind 5-CQA, while caffeine was not recognized. To demonstrate this, there is a promising system that can be exploited in the design of an optical sensor for 5-CQA detection. Polymer fMIP01 was immobilized by physical entrapment on a functionalized glass surface, showing a quenching of fluorescence with an increase of the CGA concentration between 156 µM and 40 mM.


Asunto(s)
Ácido Clorogénico , Nanopartículas , Cafeína , Cromatografía Líquida de Alta Presión , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA