Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Med Microbiol ; 312(4): 151555, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35483107

RESUMEN

Cholera is a life-threatening diarrheal disease caused by the human pathogenic bacterium Vibrio cholerae. Regulatory elements are essential for bacterial transition between the natural aquatic environment and the human host. One of them is the alternative sigma factor RpoS and its anti-sigma factor RssB. Regulation principles seem to be conserved among RpoS/RssB interaction modes between V. cholerae and Enterobacteriaceae species, however the associated input and output pathways seem different. In Escherichia coli, RpoS/RssB is important for the activation of an emergency program to increase persistence and survival. Whereas, it activates motility and chemotaxis in V. cholerae, used strategically to escape from starvation conditions. We characterised a starvation-induced interaction model showing a negative feedback loop between RpoS and RssB expression. We showed by genotypic and phenotypic analysis that rssB influences motility, growth behaviour, colonization fitness, and post-infectious survival. Furthermore, we found that RssB itself is a substrate for proteolysis and a critical Asp mutation was identified and characterised to influence rssB phenotypes and their interaction with RpoS. In summary, we present novel information about the regulatory interaction between RpoS and RssB being active under in vivo colonization conditions and mark an extension to the feedback regulation circuit, showing that RssB is a substrate for proteolysis.


Asunto(s)
Proteínas de Escherichia coli , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Vibrio cholerae/metabolismo
2.
Mol Microbiol ; 115(6): 1244-1261, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33330989

RESUMEN

Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host-derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE -pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU's C-terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen's intestinal survival.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor sigma/genética , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Adhesinas Bacterianas/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Porinas/biosíntesis , Porinas/genética , Regiones Promotoras Genéticas/genética , Vibrio cholerae/metabolismo
3.
Mol Microbiol ; 114(2): 262-278, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32251547

RESUMEN

Protein-protein interactions (PPIs) are key mechanisms in the maintenance of biological regulatory networks. Herein, we characterize PPIs within ToxR and its co-activator, ToxS, to understand the mechanisms of ToxR transcription factor activation. ToxR is a key transcription activator that is supported by ToxS for virulence gene regulation in Vibrio cholerae. ToxR comprises a cytoplasmic DNA-binding domain that is linked by a transmembrane domain to a periplasmic signal receiver domain containing two cysteine residues. ToxR-ToxR and ToxR-ToxS PPIs were detected using an adenylate-cyclase-based bacterial two-hybrid system approach in Escherichia coli. We found that the ToxR-ToxR PPIs are significantly increased in response to ToxR operators, the co-activator ToxS and bile salts. We suggest that ToxS and bile salts promote the interaction between ToxR molecules that ultimately results in dimerization. Upon binding of operators, ToxR-ToxR PPIs are found at the highest frequency. Moreover, disulfide-bond-dependent interaction in the periplasm results in homodimer formation that is promoted by DNA binding. The formation of these homodimers and the associated transcriptional activity of ToxR were strongly dependent on the oxidoreductases DsbA/DsbC. These findings show that protein and non-protein partners, that either transiently or stably interact with ToxR, fine-tune ToxR PPIs, and its associated transcriptional activity in changing environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/metabolismo , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Interacciones Huésped-Patógeno/fisiología , Proteínas de la Membrana/genética , Dominios Proteicos/genética , Mapas de Interacción de Proteínas/fisiología , Factores de Transcripción/genética , Vibrio cholerae/patogenicidad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Mol Microbiol ; 110(5): 796-810, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218472

RESUMEN

In Vibrio cholerae, virulence gene expression is regulated by a transmembrane-localized transcription factor complex designated as ToxRS. ToxR harbours two cysteines in the periplasmic domain that can form inter- and intramolecular disulfide bonds. In this study, we investigated the σE -dependent inner membrane proteolysis of ToxR, which occurs via the periplasmic-localized proteases DegS and DegP. Both proteases respond to the redox state of the two cysteine thiol groups of ToxR. Interestingly, in the presence of sodium deoxycholate, ToxR proteolysis is blocked independently of ToxS, whereas ToxR activation by bile salts requires ToxS function. From these data, we identified at least two levels of control for ToxR activation by sodiumdeoxycholate. First, bile inhibits ToxR degradation under starvation and alkaline pH or under conditions in which DegPS responds to the reduced disulfide bonds of ToxR. The second level links bile to ToxRS complex formation and further activation of its transcription factor activity. Overall, our data suggest a comprehensive bile sensory function for the ToxRS complex during host colonization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Vibrio cholerae/metabolismo , Cisteína/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Periplasma/metabolismo , Proteínas Periplasmáticas/metabolismo , Dominios Proteicos , Serina Endopeptidasas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
5.
Int J Med Microbiol ; 307(3): 154-165, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28228329

RESUMEN

Vibrio cholerae can colonize the gastrointestinal track of humans and cause the disease cholera. During colonization, the alternative sigma factor, RpoS, controls a process known as "mucosal escape response," defining a specific spatial and temporal response and effecting chemotaxis and motility. In this report, the expression and proteolytic control of RpoS in V. cholerae was characterized. To date, aspects of proteolysis control, the involved components, and proteolysis regulation have not been addressed for RpoS in V. cholerae. Similar to Escherichia coli, we find that the RpoS protein is subjected to regulated intracellular proteolysis, which is mediated by homologues of the proteolysis-targeting factor RssB and the protease complex ClpXP. As demonstrated, RpoS expression transiently peaks after cells are shifted from rich to minimal growth medium. This peak level is dependent on (p)ppGpp-activated rpoS transcription and controlled RpoS proteolysis. The RpoS peak level also correlates with induction of a chemotaxis gene, encoding a methyl-accepting chemotaxis protein, earlier identified to belong to the mucosal escape response pathway. These results suggest that the RpoS expression peak is linked to (p)ppGpp alarmone increase, leading to enhanced motility and chemotaxis, and possibly contributing to the mucosal escape response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , GTP Pirofosfoquinasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Quimiotaxis , Medios de Cultivo/química , Humanos , Proteolisis , Vibrio cholerae/crecimiento & desarrollo
6.
Int J Med Microbiol ; 307(2): 139-146, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28179078

RESUMEN

Haemophilus influenzae harbours a complex array of factors to resist human complement attack. As non-typeable H. influenzae (NTHi) strains do not possess a capsule, their serum resistance mainly depends on other mechanisms including LOS decoration. In this report, we describe the identification of a highly serum resistant, nasopharyngeal isolate (NTHi23) by screening a collection of 77 clinical isolates. For NTHi23, we defined the MLST sequence type 1133, which matches the profile of a previously published invasive NTHi isolate. A detailed genetic analysis revealed that NTHi23 shares several complement evading mechanisms with invasive disease isolates. These mechanisms include the functional expression of a retrograde phospholipid trafficking system and the presumable decoration of the LOS structure with sialic acid. By screening the NTHi23 population for spontaneous decreased serum resistance, we identified a clone, which was about 103-fold more sensitive to complement-mediated killing. Genome-wide analysis of this isolate revealed a phase variation in the N'-terminal region of lpsA, leading to a truncated version of the glycosyltransferase (LpsA). We further showed that a NTHi23 lpsA mutant exhibits a decreased invasion rate into human alveolar basal epithelial cells. Since only a small proportion of the NTHi23 population expressed the serum sensitive phenotype, resulting from lpsA phase-off, we conclude that the nasopharyngeal environment selected for a population expressing the intact and functional glycosyltransferase.


Asunto(s)
Variación Antigénica , Actividad Bactericida de la Sangre , Haemophilus influenzae/inmunología , Haemophilus influenzae/fisiología , Nasofaringe/microbiología , Adulto , Células Epiteliales Alveolares/microbiología , Línea Celular , Niño , Endocitosis , Genotipo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Humanos , Evasión Inmune , Tipificación de Secuencias Multilocus
7.
Chemistry ; 21(11): 4350-8, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25655041

RESUMEN

Macrolide antibiotics, such as azithromycin and erythromycin, are in widespread use for the treatment of bacterial infections. Macrolides are taken up and excreted mainly by bile. Additionally, they have been implicated in biliary system diseases and to modify the excretion of other drugs through bile. Despite mounting evidence for the interplay between macrolide antibiotics and bile acids, the molecular details of this interaction remain unknown. Herein, we show by NMR measurements that macrolides directly bind to bile acid micelles. The topology of this interaction has been determined by solvent paramagnetic relaxation enhancements (solvent PREs). The macrolides were found to be bound close to the surface of the micelle. Increasing hydrophobicity of both the macrolide and the bile acid strengthen this interaction. Both bile acid and macrolide molecules show similar solvent PREs across their whole structures, indicating that there are no preferred orientations of them in the bile micelle aggregates. The binding to bile aggregates does not impede macrolide antibiotics from targeting bacteria. In fact, the toxicity of azithromycin towards enterotoxic E. coli (ETEC) is even slightly increased in the presence of bile, as was shown by effective concentration (EC50 ) values.


Asunto(s)
Antibacterianos/química , Ácidos y Sales Biliares/química , Macrólidos/química , Estructura Molecular
8.
J Bacteriol ; 195(8): 1800-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417487

RESUMEN

The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with Km values ranging from 0.275 to 1.273 µM for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.


Asunto(s)
Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Hexosafosfatos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Fosfatos/metabolismo , Vibrio cholerae/metabolismo , Transporte Biológico Activo/fisiología , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , ADN Bacteriano , Cinética , Proteínas de Transporte de Monosacáridos/genética , Mutación , Plásmidos , Vibrio cholerae/genética
9.
PLoS One ; 7(10): e47756, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144706

RESUMEN

Virulence factor production in Vibrio cholerae is complex, with ToxRS being an important part of the regulatory cascade. Additionally, ToxR is the transcriptional regulator for the genes encoding the major outer membrane porins OmpU and OmpT. ToxR is a transmembrane protein and contains two cysteine residues in the periplasmic domain. This study addresses the influence of the thiol-disulfide oxidoreductase system DsbAB, ToxR cysteine residues and ToxR/ToxS interaction on ToxR activity. The results show that porin production correlates with ToxR intrachain disulfide bond formation, which depends on DsbAB. In contrast, formation of ToxR intrachain or interchain disulfide bonds is dispensable for virulence factor production and in vivo colonization. This study further reveals that in the absence of ToxS, ToxR interchain disulfide bond formation is facilitated, whereat cysteinyl dependent homo- and oligomerization of ToxR is suppressed if ToxS is coexpressed. In summary, new insights into gene regulation by ToxR are presented, demonstrating a mechanism by which ToxR activity is linked to a DsbAB dependent intrachain disulfide bond formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Disulfuros/metabolismo , Factores de Transcripción/metabolismo , Vibrio cholerae/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cólera/genética , Cólera/microbiología , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Disulfuros/química , Regulación Bacteriana de la Expresión Génica , Immunoblotting , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Periplasma/metabolismo , Porinas/genética , Porinas/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Multimerización de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/química , Factores de Transcripción/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia/genética
10.
J Bacteriol ; 191(22): 7027-38, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19767434

RESUMEN

The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease cholera. Both motility and chemotaxis of V. cholerae have been shown to contribute to the virulence and spread of cholera. The flagellar gene operons are organized into a hierarchy composed of four classes (I to IV) based on their temporal expression patterns. Some regulatory elements involved in flagellar gene expression have been elucidated, but regulation is complex and flagellar biogenesis in V. cholerae is not completely understood. In this study, we determined that the virulence defect of a V. cholerae cheW1 deletion mutant was due to polar effects on the downstream open reading frame VC2058 (flrD). Expression of flrD in trans restored the virulence defect of the cheW1 deletion mutant, and deletion of flrD resulted in a V. cholerae strain attenuated for virulence, as determined by using the infant mouse intestinal colonization model. The flrD mutant strain exhibited decreased transcription of class III and IV flagellar genes and reduced motility. Transcription of the flrD promoter, which lies within the coding sequence of cheW1, is independent of the flagellar transcriptional activators FlrA and RpoN, which activate class II genes, indicating that flrD does not fit into any of the four flagellar gene classes. Genetic epistasis studies revealed that the two-component system FlrBC, which is required for class III and IV flagellar gene transcription, acts downstream of flrD. We hypothesize that the inner membrane protein FlrD interacts with the cytoplasmic FlrBC complex to activate class III and IV gene transcription.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/genética , Proteínas Bacterianas/fisiología , Vibrio cholerae/metabolismo , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Immunoblotting , Intestinos/microbiología , Ratones , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sitio de Iniciación de la Transcripción , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia/genética , Virulencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA