Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Psychophysiology ; 60(12): e14381, 2023 12.
Article En | MEDLINE | ID: mdl-37435973

Computational psychiatry focuses on identifying core cognitive processes that appear altered across distinct psychiatric disorders. Temporal discounting of future rewards and model-based control during reinforcement learning have proven as two promising candidates. Despite its trait-like stability, temporal discounting may be at least partly under contextual control. Highly arousing cues were shown to increase discounting, although evidence to date remains somewhat mixed. Whether model-based reinforcement learning is similarly affected by arousing cues remains unclear. Here, we tested cue-reactivity effects (erotic pictures) on subsequent temporal discounting and model-based reinforcement learning in a within-subjects design in n = 39 healthy heterosexual male participants. Self-reported and physiological arousal (cardiac activity and pupil dilation) were assessed before and during cue exposure. Arousal was increased during exposure of erotic versus neutral cues both on the subjective and autonomic level. Erotic cue exposure increased discounting as reflected by more impatient choices. Hierarchical drift diffusion modeling (DDM) linked increased discounting to a shift in the starting point bias of evidence accumulation toward immediate options. Model-based control during reinforcement learning was reduced following erotic cues according to model-agnostic analysis. Notably, DDM linked this effect to attenuated forgetting rates of unchosen options, leaving the model-based control parameter unchanged. Our findings replicate previous work on cue-reactivity effects in temporal discounting and for the first time show similar effects in model-based reinforcement learning in a heterosexual male sample. This highlights how environmental cues can impact core human decision processes and reveal that comprehensive modeling approaches can yield novel insights in reward-based decision processes.


Cues , Delay Discounting , Humans , Male , Reward , Reinforcement, Psychology , Arousal/physiology
2.
PLoS Comput Biol ; 18(12): e1010785, 2022 12.
Article En | MEDLINE | ID: mdl-36548401

Supplementation with the catecholamine precursor L-Tyrosine might enhance cognitive performance, but overall findings are mixed. Here, we investigate the effect of a single dose of tyrosine (2g) vs. placebo on two catecholamine-dependent trans-diagnostic traits: model-based control during reinforcement learning (2-step task) and temporal discounting, using a double-blind, placebo-controlled, within-subject design (n = 28 healthy male participants). We leveraged drift diffusion models in a hierarchical Bayesian framework to jointly model participants' choices and response times (RTS) in both tasks. Furthermore, comprehensive autonomic monitoring (heart rate, heart rate variability, pupillometry, spontaneous eye blink rate) was performed both pre- and post-supplementation, to explore potential physiological effects of supplementation. Across tasks, tyrosine consistently reduced participants' RTs without deteriorating task-performance. Diffusion modeling linked this effect to attenuated decision-thresholds in both tasks and further revealed increased model-based control (2-step task) and (if anything) attenuated temporal discounting. On the physiological level, participants' pupil dilation was predictive of the individual degree of temporal discounting. Tyrosine supplementation reduced physiological arousal as revealed by increases in pupil dilation variability and reductions in heart rate. Supplementation-related changes in physiological arousal predicted individual changes in temporal discounting. Our findings provide first evidence that tyrosine supplementation might impact psychophysiological parameters, and suggest that modeling approaches based on sequential sampling models can yield novel insights into latent cognitive processes modulated by amino-acid supplementation.


Delay Discounting , Humans , Male , Bayes Theorem , Tyrosine/pharmacology , Reinforcement, Psychology , Arousal , Pupil/physiology
...