Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368977

RESUMEN

A Ni/1-bpp catalyst was demonstrated to be effective in the Negishi alkylation with multiple classes of alkylpyridinium salts, including α-primary and α-secondary. These conditions are also effective for benzylic pyridinium salts, demonstrating the successful Negishi alkylation of benzylic pyridinium salts for the first time. Further, 14 derivatives of 1-bpp were prepared with a variety of steric and electronic properties to study how these changes impact the success of the Negishi alkylation.

2.
J Am Chem Soc ; 145(10): 5684-5695, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36853652

RESUMEN

A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid, and diaminopropanoic acid to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include ability to transverse scales, tolerance of pharma-relevant (hetero)aryls and biorthogonal functional groups, and the applicability beyond monomeric amino acids to short and macrocyclic peptide substrates. The success of this work relied on high-throughput experimentation to identify complementary reaction conditions that proved critical for achieving the coupling of a broad scope of aryl bromides with a range of amino acid and peptide substrates including macrocyclic peptides.


Asunto(s)
Aminoácidos , Bromuros , Aminoácidos/química , Aminas/química , Péptidos/química , Ornitina
3.
ACS Catal ; 13(14): 9336-9345, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-38188282

RESUMEN

An electrochemical, nickel-catalyzed reductive coupling of alkylpyridinium salts and aryl halides is reported. High-throughput experimentation (HTE) was employed for rapid reaction optimization and evaluation of a broad scope of pharmaceutically relevant structurally diverse aryl halides, including complex drug-like substrates. In addition, the transformation is compatible with both primary and secondary alkylpyridinium salts with distinct conditions. Mechanistic insights were critical to enhance the efficiency of coupling using secondary alkylpyridinium salts. Systematic comparisons of the electrochemical and non-electrochemical methods revealed the complementary scope and efficiency of the two approaches.

4.
ACS Catal ; 11(14): 8456-8466, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34745709

RESUMEN

Via conversion to Katritzky pyridinium salts, alkyl amines can now be used as alkyl radical precursors for a range of deaminative functionalization reactions. The key step of all these methods is single electron reduction of the pyridinium ring, which triggers C-N bond cleavage. However, little has been done to understand how the precise nature of the pyridinium influences these events. Using a combination of synthesis, computation, and electrochemistry, this study delineates the steric and electronic effects that substituents have on the canonical steps and the overall process. Depending on the approach taken, consideration of both the reduction and the subsequent radical dissociation may be necessary. Whereas the electronic effects on these steps work in opposition to each other, the steric effects are synergistic, with larger substituents favoring both steps. This understanding provides a framework for future design of pyridinium salts to match the mode of catalysis or activation.

5.
Org Lett ; 23(16): 6242-6245, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34328332

RESUMEN

A nickel-catalyzed deaminative cyanation of Katritzky pyridinium salts has been developed. When it is coupled with formation of the pyridinium salt from primary amines, this method enables alkyl amines to be converted to alkyl nitriles. A less toxic cyanide reagent, Zn(CN)2, is utilized, and diverse functional groups and heterocycles are tolerated. The method also enables a one-carbon homologation of alkyl amines via reduction of the nitrile products, in addition to many other potential transformations of the versatile nitrile group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...