Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Am J Hum Genet ; 111(6): 1061-1083, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38723632

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Genetic Predisposition to Disease , Genome-Wide Association Study , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Transcriptome , Risk Factors , Genomics/methods , Case-Control Studies , Multiomics
2.
medRxiv ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38496424

Background: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.

3.
NPJ Genom Med ; 9(1): 19, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443389

Survival from ovarian cancer depends on the resection status after primary surgery. We performed genome-wide association analyses for resection status of 7705 ovarian cancer patients, including 4954 with high-grade serous carcinoma (HGSOC), to identify variants associated with residual disease. The most significant association with resection status was observed for rs72845444, upstream of MGMT, in HGSOC (p = 3.9 × 10-8). In gene-based analyses, PPP2R5C was the most strongly associated gene in HGSOC after stage adjustment. In an independent set of 378 ovarian tumours from the AGO-OVAR 11 study, variants near MGMT and PPP2R5C correlated with methylation and transcript levels, and PPP2R5C mRNA levels predicted progression-free survival in patients with residual disease. MGMT encodes a DNA repair enzyme, and PPP2R5C encodes the B56γ subunit of the PP2A tumour suppressor. Our results link heritable variation at these two loci with resection status in HGSOC.

5.
Nat Genet ; 55(9): 1435-1439, 2023 09.
Article En | MEDLINE | ID: mdl-37592023

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.


Exome , Neoplasms , Female , Humans , Exome Sequencing , Exome/genetics , Mutation, Missense/genetics
6.
Cancer Epidemiol Biomarkers Prev ; 32(8): 1087-1096, 2023 08 01.
Article En | MEDLINE | ID: mdl-37220873

BACKGROUND: Although folate intake has not been associated with an increased risk of ovarian cancer overall, studies of other cancer types have suggested that high folate intake may promote carcinogenesis in precancerous lesions. Women with endometriosis (a potential precancerous lesion) have an increased risk of developing ovarian cancer; however, whether high folate intake increases risk in this group is unknown. METHODS: We conducted a pooled analysis of six case-control studies from the Ovarian Cancer Association Consortium to investigate the association between folate intake and risk of ovarian cancer among women with and without self-reported endometriosis. We included 570 cases/558 controls with and 5,171/7,559 without endometriosis. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals for the association between folate intake (dietary, supplemental, and total) and ovarian cancer risk. Finally, we used Mendelian randomization (MR) to evaluate our results using genetic markers as a proxy for folate status. RESULTS: Higher dietary folate intake was associated with an increased risk of ovarian cancer for women with endometriosis [OR, 1.37 (1.01-1.86)] but not for women without endometriosis. There was no association between supplemental folate intake and ovarian cancer risk for women with or without endometriosis. A similar pattern was seen using MR. CONCLUSIONS: High dietary folate intake may be associated with an increased risk of ovarian cancer among women with endometriosis. IMPACT: Women with endometriosis with high folate diets may be at increased risk of ovarian cancer. Further research is needed on the potential cancer-promoting effects of folate in this group.


Endometriosis , Ovarian Neoplasms , Female , Humans , Folic Acid , Endometriosis/epidemiology , Endometriosis/complications , Risk Factors , Case-Control Studies , Ovarian Neoplasms/etiology , Ovarian Neoplasms/genetics
7.
J Natl Cancer Inst ; 114(11): 1533-1544, 2022 11 14.
Article En | MEDLINE | ID: mdl-36210504

BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.


Genome-Wide Association Study , Ovarian Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial/genetics , Alleles , DNA Copy Number Variations , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
9.
Eur J Hum Genet ; 30(3): 349-362, 2022 03.
Article En | MEDLINE | ID: mdl-35027648

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.


Breast Neoplasms , Ovarian Neoplasms , Bayes Theorem , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors
10.
Commun Biol ; 5(1): 65, 2022 01 18.
Article En | MEDLINE | ID: mdl-35042965

Germline copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Gene burden tests detected the strongest association for deletions in BRCA1 (P = 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P = 0.0008), ATM (P = 0.002) and BRCA2 (P = 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.


Breast Neoplasms/genetics , DNA Copy Number Variations , Genome, Human , Genome-Wide Association Study , Germ Cells , Case-Control Studies , Female , Humans , Risk Factors
11.
HGG Adv ; 2(3)2021 Jul 08.
Article En | MEDLINE | ID: mdl-34317694

Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This identified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR < 0.05 that were >1 Mb away from known breast and/or ovarian cancer susceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer analysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk.

12.
Cancer Epidemiol Biomarkers Prev ; 30(9): 1669-1680, 2021 09.
Article En | MEDLINE | ID: mdl-34162658

BACKGROUND: Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS: We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS: We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS: The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT: This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.


Autophagy-Related Protein-1 Homolog , Carcinoma, Ovarian Epithelial/genetics , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms/genetics , Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/mortality , Female , Gene Knockout Techniques , Genome-Wide Association Study , Humans , Ovarian Neoplasms/mortality , Polymorphism, Single Nucleotide , Progression-Free Survival
14.
Nat Commun ; 12(1): 1078, 2021 02 17.
Article En | MEDLINE | ID: mdl-33597508

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.


BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Adult , Alleles , Female , Genotype , Humans , Linkage Disequilibrium , Middle Aged , Mutation , Quantitative Trait Loci/genetics , Risk Factors
15.
Nat Commun ; 11(1): 3833, 2020 07 31.
Article En | MEDLINE | ID: mdl-32737321

Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia.


Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Adult , Aged , Asia/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/ethnology , Case-Control Studies , Europe/epidemiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Middle Aged , Odds Ratio , Prognosis , Risk
16.
Nat Genet ; 52(1): 56-73, 2020 01.
Article En | MEDLINE | ID: mdl-31911677

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.


Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Chromosome Mapping/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Bayes Theorem , Female , Humans , Linkage Disequilibrium , Regulatory Sequences, Nucleic Acid , Risk Factors
18.
Nat Commun ; 10(1): 431, 2019 01 25.
Article En | MEDLINE | ID: mdl-30683880

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.


Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Head and Neck Neoplasms/genetics , Inheritance Patterns , Lung Neoplasms/genetics , Ovarian Neoplasms/genetics , Prostatic Neoplasms/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/ethnology , Breast Neoplasms/pathology , Case-Control Studies , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/ethnology , Colorectal Neoplasms/pathology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/ethnology , Head and Neck Neoplasms/pathology , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/ethnology , Lung Neoplasms/pathology , Male , Mental Disorders/ethnology , Mental Disorders/genetics , Mental Disorders/physiopathology , Neoplasm Proteins/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/ethnology , Ovarian Neoplasms/pathology , Phenotype , Polymorphism, Single Nucleotide , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/pathology , Smoking/ethnology , Smoking/genetics , Smoking/physiopathology , White People
19.
Cancer Res ; 79(3): 467-481, 2019 02 01.
Article En | MEDLINE | ID: mdl-30487138

Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439.


Carcinoma, Ovarian Epithelial/genetics , Chromosomes, Human, Pair 9 , Ovarian Neoplasms/genetics , Base Sequence , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosome Mapping , Cystadenocarcinoma, Serous/genetics , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , HEK293 Cells , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
20.
Int J Cancer ; 144(9): 2192-2205, 2019 05 01.
Article En | MEDLINE | ID: mdl-30499236

As a follow-up to genome-wide association analysis of common variants associated with ovarian carcinoma (cancer), our study considers seven well-known ovarian cancer risk factors and their interactions with 28 genome-wide significant common genetic variants. The interaction analyses were based on data from 9971 ovarian cancer cases and 15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for multiplicative interaction and for relative excess risk due to additive interaction were used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) use (ever vs. never) and rs13255292 (p value = 3.48 × 10-4 ). Among women with the TT genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI = 0.46-0.60) compared to 0.71 (95%CI = 0.66-0.77) for women with the CC genotype. When stratified by duration of OCP use, women with 1-5 years of OCP use exhibited differential protective benefit across genotypes. However, no interaction on either the multiplicative or additive scale was found to be statistically significant after multiple testing correction. The results suggest that OCP use may offer increased benefit for women who are carriers of the T allele in rs13255292. On the other hand, for women carrying the C allele in this variant, longer (5+ years) use of OCP may reduce the impact of carrying the risk allele of this SNP. Replication of this finding is needed. The study presents a comprehensive analytic framework for conducting gene-environment analysis in ovarian cancer.


Environmental Exposure/adverse effects , Gene-Environment Interaction , Genetic Predisposition to Disease/genetics , Ovarian Neoplasms/etiology , Ovarian Neoplasms/genetics , Case-Control Studies , Contraceptives, Oral, Hormonal , Environment , Female , Genome-Wide Association Study/methods , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Risk
...